Câu hỏi:

29/06/2022 351

Tìm giá trị lớn nhất của \[\left| z \right|,\]biết rằng z thỏa mãn điều kiện \[\left| {\frac{{ - 2 - 3i}}{{3 - 2i}}z + 1} \right| = 1\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Có\[\frac{{ - 2 - 3i}}{{3 - 2i}} = - i\].Đặt\[z = x + yi\]thì

\[\frac{{ - 2 - 3i}}{{3 - 2i}}z + 1 = - i(x + yi) + 1 = (y + 1) - xi\]

Điều kiện đã cho trong bài được viết lại thành\[{(y + 1)^2} + {x^2} = 1\]

Điểm biểu diễn M(x,y) của z chạy trên đường tròn (*) có tâm I(0,−1), bán kính bằng 1.

Cần tìm điểm M(x,y) thuộc đường tròn này để OM lớn nhất.

Vì O nằm trên đường tròn nên OM lớn nhất khi OM là đường kính của (*) ⇔I là trung điểm của OM \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2{x_I}}\\{y = 2{y_I}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = - 2}\end{array}} \right. \Leftrightarrow M(0, - 2)\)

Suy ra\[z = - 2i \Leftrightarrow |z| = 2\]

Vậy \[\max \left| z \right| = 2\]Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo bất đẳng thức chứa dấu giá trị tuyệt đối ta có

\[|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \ge ||z - 1 - 2i| - |3 + 3i|| = |4 - 3\sqrt 2 | = 3\sqrt 2 - 4 = m\]

\[|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \le |z - 1 - 2i| + |3 + 3i| = 4 + 3\sqrt 2 = M\]

Suy ra

\[{M^2} + {m^2} = {(3\sqrt 2 - 4)^2} + {(4 + 3\sqrt 2 )^2} = 2({4^2} + {(3\sqrt 2 )^2}) = 68\]

Đáp án cần chọn là: C

Lời giải

Ta có\[|z - 3 + 4i| = 2 \Leftrightarrow |2z - 6 + 8i| = 4.\]

Theo bất đẳng thức chứa dấu giá trị tuyệt đối có

\[4 = |2z - 6 + 8i| = |(2z + 1 - i) - (7 - 9i)| \ge |2z + 1 - i| - |7 - 9i| = |w| - \sqrt {130} \]

\[ \Rightarrow |w| - \sqrt {130} \le 4 \Rightarrow |w| \le 4 + \sqrt {130} \]

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP