Câu hỏi:

29/06/2022 332

Đề thi THPT QG - 2021 - mã 101

Xét các số phức z,w thỏa mãn \[\left| z \right| = 1\;\]và \[\left| w \right| = 2\]. Khi \[\left| {z + i\overline {\rm{w}} - 6 - 8i} \right|\] đạt giá trị nhỏ nhất, \[\left| {z - w} \right|\;\] bằng? 

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1: Dùng phương pháp hình học →→ Kỹ năng dồn số phức.

\[P = \left| {z + i\,{\rm{\bar w}} - 6 - 8i} \right| = \left| {\left( {z - 6 - 8i} \right) - \left( { - i\bar w} \right)} \right| = \left| {u - v} \right|\]

Trong đó:\(\left\{ {\begin{array}{*{20}{c}}{u = z - 6 - 8i}\\{v = - i\overline {\rm{w}} }\end{array}} \right.\) u có điểm biểu diễn là A, v có điểm biểu diễn là B.

\[ \Rightarrow P = \left| {u - v} \right| = AB \Rightarrow \]Cần đạt Min.

\[\left| z \right| = 1 \Leftrightarrow \left| {\left( {z - 6 - 8i} \right) + 6 + 8i} \right| = 1 \Leftrightarrow \left| {u + 6 + 8i} \right| = 1\]

⇒ Tập hợp điểm A biểu diễn số phức uu là đường tròn: \[\left( {{C_1}} \right):\left\{ {\begin{array}{*{20}{c}}{I( - 6; - 8)}\\{{R_1} = 1}\end{array}} \right.\]

\[\left| w \right| = 2 \Leftrightarrow \left| {\bar w} \right| = 2 \Leftrightarrow \left| { - i} \right|.\left| {\bar w} \right| = \left| { - i} \right|.2 \Rightarrow \left| { - i\bar w} \right| = 2 \Leftrightarrow \left| v \right| = 2\]

⇒ Tập hợp điểm B biểu diễn số phức v là đường tròn\[\;({C_2}):\left\{ {\begin{array}{*{20}{c}}{O(0;0)}\\{{R_2} = 2}\end{array}} \right.\]

Có\(\left\{ {\begin{array}{*{20}{c}}{IA = {R_1} = 1}\\{OB = {R_2} = 2}\\{OI = 10}\end{array}} \right.\)

Đề thi THPT QG - 2021 - mã 101Xét các số phức z,w thỏa mãn (ảnh 1)

 

\[ \Rightarrow A{B_{\min }} = IO - {R_1} - {R_2} = 10 - 1 - 2 = 7\]

Min đạt được khi:\(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {OA} = \frac{9}{{10}}\overrightarrow {OI} \Rightarrow A\left( {\frac{{ - 27}}{5};\frac{{ - 36}}{5}} \right) \Rightarrow u = - \frac{{27}}{5} - \frac{{36}}{5}i}\\{\overrightarrow {OB} = \frac{1}{5}\overrightarrow {OI} \Rightarrow B\left( {\frac{{ - 6}}{5};\frac{{ - 8}}{5}} \right) \Rightarrow v = - \frac{6}{5} - \frac{8}{5}i}\end{array}} \right.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{z = u + 6 + 8i = \frac{3}{5} + \frac{4}{5}i}\\{ - i\overline {\rm{w}} = v \Rightarrow \overline {\rm{w}} = \frac{v}{{ - i}} = \frac{{ - \frac{6}{5} - \frac{8}{5}i}}{{ - i + \frac{6}{5}i}} = \frac{8}{5} - \frac{6}{5}i \Rightarrow {\rm{w}} = \frac{8}{5}}\end{array}} \right.\)

\[ \Rightarrow \left| {z - w} \right| = \left| {\left( {\frac{3}{5} + \frac{4}{5}i} \right) - \left( {\frac{8}{5} + \frac{6}{5}i} \right)} \right| = \frac{{\sqrt {29} }}{5}\]

Cách 2: Phương pháp dùng BĐT vectơ

Ta có BĐT cho 3 vectơ\[\vec a,\,\,\vec b,\,\,\vec c\]thì\[\left| {\vec a + \vec b + \vec c} \right| \ge \left| {\vec a} \right| - \left| {\vec b} \right| - \left| {\vec c} \right|\]

Dấu “=” xảy ra ⇔\(\left\{ {\begin{array}{*{20}{c}}{\left| {\overrightarrow a } \right| \ge \left| {\overrightarrow b } \right| + \left| {\overrightarrow c } \right|}\\{\overrightarrow a = k\overrightarrow b }\\{\overrightarrow a = m\overrightarrow c }\end{array}} \right.(k;m < 0)\)

* Đặt\[P = \left| {z + i\,{\rm{\bar w}} - 6 - 8i} \right| = \left| {\underbrace {\left( { - 6 - 8i} \right)}_{ = \overrightarrow a } + \underbrace z_{ = \overrightarrow b } + \underbrace {i\overline {\rm{w}} }_{ = \overrightarrow c }} \right|\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{( - 6 - 8i) \Leftrightarrow \overrightarrow a ( - 6; - 8) \Rightarrow \left| {\overrightarrow a } \right| = 10}\\{z \Leftrightarrow \overrightarrow b \Rightarrow \left| {\overrightarrow b } \right| = 1}\\{i\overline {\rm{w}} \Leftrightarrow \overrightarrow c \Rightarrow \left| {\overrightarrow c } \right| = \left| {i\overline {\rm{w}} } \right| = \left| {\rm{w}} \right| = 2}\end{array}} \right.\)

\[ \Rightarrow P = \left| {\vec a + \vec b + \vec c} \right| \ge \left| {\vec a} \right| - \left| {\vec b} \right| - \left| {\vec c} \right| = 10 - 1 - 2 = 7\]

\[ \Rightarrow {P_{\min }} = 7\]đạt Min khi\(\left\{ {\begin{array}{*{20}{c}}{\left| {\overrightarrow a } \right| \ge \left| {\overrightarrow b } \right| + \left| {\overrightarrow c } \right|(dung\,do10 > 1 + 2)}\\{\overrightarrow a = - 10\overrightarrow b \Leftrightarrow \overrightarrow b = - \frac{1}{{10}}\overrightarrow a = \left( {\frac{3}{5};\frac{4}{5}} \right)}\\{\overrightarrow a = - 5\overrightarrow c \Leftrightarrow \overrightarrow c = - \frac{1}{5}\overrightarrow a = \left( {\frac{6}{5};\frac{8}{5}} \right)}\end{array}} \right.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{z = \frac{3}{5} + \frac{4}{5}i}\\{i\overline {\rm{w}} = \frac{6}{5} + \frac{8}{5}i \Leftrightarrow {\rm{w}} = \frac{8}{5} + \frac{6}{5}i}\end{array}} \right.\)

\[ \Rightarrow \left| {z - w} \right| = \left| {\left( {\frac{3}{5} + \frac{4}{5}i} \right) - \left( {\frac{8}{5} + \frac{6}{5}i} \right)} \right| = \frac{{\sqrt {29} }}{5}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho số phức z thỏa mãn\[\left| {z - 1 - 2i} \right| = 4\]. Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \[\left| {z + 2 + i} \right|.\]Tính \[S = {M^2} + {m^2}\]

Xem đáp án » 29/06/2022 504

Câu 2:

Cho số phức z thoả \[\left| {z - 3 + 4i} \right| = 2\;\]và \[w = 2z + 1 - i\]. Khi đó \[\left| w \right|\] có giá trị lớn nhất là:

Xem đáp án » 29/06/2022 339

Câu 3:

Cho số phức z thỏa mãn \[\left| {z - 2 - 2i} \right| = 1\]. Số phức z−i có mô đun nhỏ nhất là:

Xem đáp án » 29/06/2022 318

Câu 4:

Với hai số phức bất kì \[{z_1},{z_2}\], khẳng định nào sau đây đúng:

Xem đáp án » 29/06/2022 313

Câu 5:

Xác định số phức z thỏa mãn \[\left| {z - 2 - 2i} \right| = \sqrt 2 \] mà \[\left| z \right|\;\]đạt giá trị lớn nhất.

Xem đáp án » 29/06/2022 289

Câu 6:

Tìm giá trị lớn nhất của \[\left| z \right|,\]biết rằng z thỏa mãn điều kiện \[\left| {\frac{{ - 2 - 3i}}{{3 - 2i}}z + 1} \right| = 1\].

Xem đáp án » 29/06/2022 289

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store