Cho số phức z có điểm biểu diễn nằm trên đường thẳng \[3x - 4y - 3 = 0,\left| z \right|\;\]nhỏ nhất bằng.
Quảng cáo
Trả lời:
Giả sử\[z = x + yi\] ta có\[3x - 4y - 3 = 0\]suy ra\[y = \frac{3}{4}\left( {x - 1} \right)\]
Ta có
\[\begin{array}{l}|z| = \sqrt {{x^2} + {y^2}} = \sqrt {{x^2} + \frac{9}{{16}}{{(x - 1)}^2}} = \frac{1}{4}\sqrt {16{x^2} + 9{{(x - 1)}^2}} \\ = \frac{1}{4}\sqrt {25{x^2} - 18x + 9} = \frac{1}{4}\sqrt {{{\left( {5x - \frac{9}{5}} \right)}^2} + \frac{{144}}{{25}}} \ge \frac{1}{4}.\frac{{12}}{5} = \frac{3}{5}\end{array}\]
Dấu “=” xảy ra khi\[x = \frac{9}{{25}}\]và\[y = - \frac{{12}}{{25}}\]
Đáp án cần chọn là: B
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo bất đẳng thức chứa dấu giá trị tuyệt đối ta có
\[|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \ge ||z - 1 - 2i| - |3 + 3i|| = |4 - 3\sqrt 2 | = 3\sqrt 2 - 4 = m\]
\[|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \le |z - 1 - 2i| + |3 + 3i| = 4 + 3\sqrt 2 = M\]
Suy ra
\[{M^2} + {m^2} = {(3\sqrt 2 - 4)^2} + {(4 + 3\sqrt 2 )^2} = 2({4^2} + {(3\sqrt 2 )^2}) = 68\]
Đáp án cần chọn là: C
Lời giải
Ta có\[|z - 3 + 4i| = 2 \Leftrightarrow |2z - 6 + 8i| = 4.\]
Theo bất đẳng thức chứa dấu giá trị tuyệt đối có
\[4 = |2z - 6 + 8i| = |(2z + 1 - i) - (7 - 9i)| \ge |2z + 1 - i| - |7 - 9i| = |w| - \sqrt {130} \]
\[ \Rightarrow |w| - \sqrt {130} \le 4 \Rightarrow |w| \le 4 + \sqrt {130} \]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.