Câu hỏi:

29/06/2022 223 Lưu

Cho số phức z thỏa mãn \[\left| {z + 3} \right| + \left| {z - 3} \right| = 10.\]Giá trị nhỏ nhất của \[\left| z \right|\;\]là:

A.3      

B.4

C.5     

D.6

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử\[z = a + bi\] theo giả thiết ta có

\[|a + bi + 3| + |a + bi - 3| = 10 \Leftrightarrow \sqrt {{{(a + 3)}^2} + {b^2}} + \sqrt {{{(a - 3)}^2} + {b^2}} = 10\]

Áp dụng bất đẳng thức Bunhiacopxki ta có

\[10 = \sqrt {{{(a + 3)}^2} + {b^2}} + \sqrt {{{(a - 3)}^2} + {b^2}} \le \sqrt {({1^2} + {1^2})[{{(a + 3)}^2} + {b^2} + {{(a - 3)}^2} + {b^2}]} \]

\[ = \sqrt {2.[2{a^2} + 2{b^2} + 18]} = 2\sqrt {{a^2} + {b^2} + 9} \]

Suy ra\[\sqrt {{a^2} + {b^2} + 9} \ge 5 \Leftrightarrow {a^2} + {b^2} + 9 \ge 25 \Leftrightarrow {a^2} + {b^2} \ge 16\]

Do đó\[|z| = \sqrt {{a^2} + {b^2}} \ge 4\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo bất đẳng thức chứa dấu giá trị tuyệt đối ta có

\[|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \ge ||z - 1 - 2i| - |3 + 3i|| = |4 - 3\sqrt 2 | = 3\sqrt 2 - 4 = m\]

\[|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \le |z - 1 - 2i| + |3 + 3i| = 4 + 3\sqrt 2 = M\]

Suy ra

\[{M^2} + {m^2} = {(3\sqrt 2 - 4)^2} + {(4 + 3\sqrt 2 )^2} = 2({4^2} + {(3\sqrt 2 )^2}) = 68\]

Đáp án cần chọn là: C

Lời giải

Cách 1: Dùng phương pháp hình học →→ Kỹ năng dồn số phức.

\[P = \left| {z + i\,{\rm{\bar w}} - 6 - 8i} \right| = \left| {\left( {z - 6 - 8i} \right) - \left( { - i\bar w} \right)} \right| = \left| {u - v} \right|\]

Trong đó:\(\left\{ {\begin{array}{*{20}{c}}{u = z - 6 - 8i}\\{v = - i\overline {\rm{w}} }\end{array}} \right.\) u có điểm biểu diễn là A, v có điểm biểu diễn là B.

\[ \Rightarrow P = \left| {u - v} \right| = AB \Rightarrow \]Cần đạt Min.

\[\left| z \right| = 1 \Leftrightarrow \left| {\left( {z - 6 - 8i} \right) + 6 + 8i} \right| = 1 \Leftrightarrow \left| {u + 6 + 8i} \right| = 1\]

⇒ Tập hợp điểm A biểu diễn số phức uu là đường tròn: \[\left( {{C_1}} \right):\left\{ {\begin{array}{*{20}{c}}{I( - 6; - 8)}\\{{R_1} = 1}\end{array}} \right.\]

\[\left| w \right| = 2 \Leftrightarrow \left| {\bar w} \right| = 2 \Leftrightarrow \left| { - i} \right|.\left| {\bar w} \right| = \left| { - i} \right|.2 \Rightarrow \left| { - i\bar w} \right| = 2 \Leftrightarrow \left| v \right| = 2\]

⇒ Tập hợp điểm B biểu diễn số phức v là đường tròn\[\;({C_2}):\left\{ {\begin{array}{*{20}{c}}{O(0;0)}\\{{R_2} = 2}\end{array}} \right.\]

Có\(\left\{ {\begin{array}{*{20}{c}}{IA = {R_1} = 1}\\{OB = {R_2} = 2}\\{OI = 10}\end{array}} \right.\)

Đề thi THPT QG - 2021 - mã 101Xét các số phức z,w thỏa mãn (ảnh 1)

 

\[ \Rightarrow A{B_{\min }} = IO - {R_1} - {R_2} = 10 - 1 - 2 = 7\]

Min đạt được khi:\(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {OA} = \frac{9}{{10}}\overrightarrow {OI} \Rightarrow A\left( {\frac{{ - 27}}{5};\frac{{ - 36}}{5}} \right) \Rightarrow u = - \frac{{27}}{5} - \frac{{36}}{5}i}\\{\overrightarrow {OB} = \frac{1}{5}\overrightarrow {OI} \Rightarrow B\left( {\frac{{ - 6}}{5};\frac{{ - 8}}{5}} \right) \Rightarrow v = - \frac{6}{5} - \frac{8}{5}i}\end{array}} \right.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{z = u + 6 + 8i = \frac{3}{5} + \frac{4}{5}i}\\{ - i\overline {\rm{w}} = v \Rightarrow \overline {\rm{w}} = \frac{v}{{ - i}} = \frac{{ - \frac{6}{5} - \frac{8}{5}i}}{{ - i + \frac{6}{5}i}} = \frac{8}{5} - \frac{6}{5}i \Rightarrow {\rm{w}} = \frac{8}{5}}\end{array}} \right.\)

\[ \Rightarrow \left| {z - w} \right| = \left| {\left( {\frac{3}{5} + \frac{4}{5}i} \right) - \left( {\frac{8}{5} + \frac{6}{5}i} \right)} \right| = \frac{{\sqrt {29} }}{5}\]

Cách 2: Phương pháp dùng BĐT vectơ

Ta có BĐT cho 3 vectơ\[\vec a,\,\,\vec b,\,\,\vec c\]thì\[\left| {\vec a + \vec b + \vec c} \right| \ge \left| {\vec a} \right| - \left| {\vec b} \right| - \left| {\vec c} \right|\]

Dấu “=” xảy ra ⇔\(\left\{ {\begin{array}{*{20}{c}}{\left| {\overrightarrow a } \right| \ge \left| {\overrightarrow b } \right| + \left| {\overrightarrow c } \right|}\\{\overrightarrow a = k\overrightarrow b }\\{\overrightarrow a = m\overrightarrow c }\end{array}} \right.(k;m < 0)\)

* Đặt\[P = \left| {z + i\,{\rm{\bar w}} - 6 - 8i} \right| = \left| {\underbrace {\left( { - 6 - 8i} \right)}_{ = \overrightarrow a } + \underbrace z_{ = \overrightarrow b } + \underbrace {i\overline {\rm{w}} }_{ = \overrightarrow c }} \right|\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{( - 6 - 8i) \Leftrightarrow \overrightarrow a ( - 6; - 8) \Rightarrow \left| {\overrightarrow a } \right| = 10}\\{z \Leftrightarrow \overrightarrow b \Rightarrow \left| {\overrightarrow b } \right| = 1}\\{i\overline {\rm{w}} \Leftrightarrow \overrightarrow c \Rightarrow \left| {\overrightarrow c } \right| = \left| {i\overline {\rm{w}} } \right| = \left| {\rm{w}} \right| = 2}\end{array}} \right.\)

\[ \Rightarrow P = \left| {\vec a + \vec b + \vec c} \right| \ge \left| {\vec a} \right| - \left| {\vec b} \right| - \left| {\vec c} \right| = 10 - 1 - 2 = 7\]

\[ \Rightarrow {P_{\min }} = 7\]đạt Min khi\(\left\{ {\begin{array}{*{20}{c}}{\left| {\overrightarrow a } \right| \ge \left| {\overrightarrow b } \right| + \left| {\overrightarrow c } \right|(dung\,do10 > 1 + 2)}\\{\overrightarrow a = - 10\overrightarrow b \Leftrightarrow \overrightarrow b = - \frac{1}{{10}}\overrightarrow a = \left( {\frac{3}{5};\frac{4}{5}} \right)}\\{\overrightarrow a = - 5\overrightarrow c \Leftrightarrow \overrightarrow c = - \frac{1}{5}\overrightarrow a = \left( {\frac{6}{5};\frac{8}{5}} \right)}\end{array}} \right.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{z = \frac{3}{5} + \frac{4}{5}i}\\{i\overline {\rm{w}} = \frac{6}{5} + \frac{8}{5}i \Leftrightarrow {\rm{w}} = \frac{8}{5} + \frac{6}{5}i}\end{array}} \right.\)

\[ \Rightarrow \left| {z - w} \right| = \left| {\left( {\frac{3}{5} + \frac{4}{5}i} \right) - \left( {\frac{8}{5} + \frac{6}{5}i} \right)} \right| = \frac{{\sqrt {29} }}{5}\]

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[\left| {{z_1} + {z_2}} \right| \le \left| {{z_1}} \right| + \left| {{z_2}} \right|\]

B. \[\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|\]

C. \[\left| {{z_1} + {z_2}} \right| \ge \left| {{z_1}} \right| + \left| {{z_2}} \right|\]

D. \[\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_1} - {z_2}} \right|\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[\sqrt 5 - 1\]

B. \[1 - \sqrt 5 \]

C. \[\sqrt 5 + 1\]

D. \[\sqrt 5 + 2\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.2 và 5

B.1 và 6      

C.2 và 6                 

D.1 và 5 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP