Câu hỏi:

29/06/2022 336 Lưu

Cho ba điểm A,B,C lần lượt biểu diễn các số phức sau \[{z_1} = 1 + i;{z_2} = z_1^2;{z_3} = m - i\]. Tìm các giá trị thực của m sao cho tam giác ABC vuông tại B.

A.m=−3      

B.m=1

C.m=−1

D.m=3

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có:\[{z_2} = 2i\]

Có A(1;1);B(0;2) và C(m;−1)

\[\overrightarrow {AB} = ( - 1;1);\overrightarrow {BC} = (m; - 3) \Rightarrow \overrightarrow {AB} .\overrightarrow {BC} = - 1.m - 3 = 0 \Leftrightarrow m = - 3\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.một đường thẳng.

B.một đường tròn.

C.một elip.

D.một điểm.

Lời giải

Bước 1:

Gọi\[z = x + yi\left( {x;y \in R} \right)\] khi đó\[\bar z = x - yi\]

Bước 2:

Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]

Vậy tập hợp điểm biểu diễn số phức z là một đường tròn.

Đáp án cần chọn là: B

Lời giải

Gọi\[z = x + yi\left( {x;y \in R} \right)\]  khi đó\[\bar z = x - yi\]

Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]

Vậy tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.B và C đối xứng với nhau qua trục tung.

B.Trọng tâm của tam giác ABC là G(1;23).

C.A và B đối xứng với nhau qua trục hoành.

D.A,B,C nằm trên đường tròn tâm tại gốc tọa độ và bán kính bằng \(\sqrt {13} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP