Câu hỏi:
29/06/2022 126Cho các số phức z thỏa mãn \[\left| {z + 1 - i} \right| = \left| {z - 1 + 2i} \right|.\]Tập hợp các điểm biểu diễn các số phức z trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó
Giả sử\[z = a + bi\left( {a,b \in R} \right)\]Ta có
\[\begin{array}{*{20}{l}}{\left| {z + 1 - i} \right| = \left| {z - 1 + 2i} \right| \Leftrightarrow \left| {\left( {a + 1} \right) + \left( {b - 1} \right)i} \right| = \left| {\left( {a - 1} \right) + \left( {b + 2} \right)i} \right|}\\{ \Leftrightarrow {{\left( {a + 1} \right)}^2} + {{\left( {b - 1} \right)}^2} = {{\left( {a - 1} \right)}^2} + {{\left( {b + 2} \right)}^2}}\\{ \Leftrightarrow 4a - 6b - 3 = 0}\end{array}\]
Vậy phương trình đường thẳng cần tìm là \[4x - 6y - 3 = 0\]
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức z thỏa mãn \[z.\overline z = 1\;\] là:
Câu 2:
Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức z thỏa mãn \[z.\overline z = 1\;\] là đường tròn có bán kính là:
Câu 3:
Cho hai số phức \[{z_1},{z_2}\;\] thỏa mãn \[\left| {{z_1}} \right| = 6,\left| {{z_2}} \right| = 2\]. Gọi M,N lần lượt là các điểm biểu diễn của số phức \[{z_1}\] và số phức \[i{z_2}_{}\]. Biết \(\widehat {MON} = {60^ \circ }\). Tính \[T = \left| {z_1^2 + 9z_2^2} \right|\]
Câu 4:
Trên mặt phẳng tọa độ, điểm M là điểm biểu diển của số phức z (như hình vẽ bên). Điểm nào trong hình vẽ là điểm biểu diển của số phức 2z?
Câu 5:
Biết rằng điểm biểu diễn số phức z là điểm M ở hình bên dưới. Modun của z bằng:
Câu 6:
Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện \[\left| {z - i} \right| = 5\] và \[{z^2}\] là số thuần ảo?
Câu 7:
Trong mặt phẳng phức gọi A,B,C lần lượt là các điểm biểu diễn của các số phức \[{z_1} = 3 + 2i;{z_2} = 3 - 2i;{z_3} = - 3 - 2i\]. Khẳng định nào sau đây là sai?
về câu hỏi!