Câu hỏi:

29/06/2022 203 Lưu

Cho số phức \[z = \left( {m + 3} \right) + \left( {{m^2} - m - 6} \right)i\] với \[m \in \mathbb{R}\] Gọi (P) là tập hợp điểm biểu diễn số phức z trong mặt phẳng tọa độ. Diện tích hình phẳng giới hạn bởi (P) và trục hoành bằng

A.\[\frac{{125}}{6}\]

B. \[\frac{{17}}{6}\]

C. 1

D. \[\frac{{55}}{6}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có\[z = \left( {m + 3} \right) + \left( {{m^2} - m - 6} \right)i\] được biểu diễn bởi điểm M(x;y) với

\(\left\{ {\begin{array}{*{20}{c}}{x = m + 3}\\{y = {m^2} - m - 6}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = x - 3}\\{y = {{(x - 3)}^2} - (x - 3) - 6}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = x - 3}\\{y = {x^2} - 7x + 6}\end{array}} \right.\)

Vậy tập hợp điểm biểu diễn số phức z là parabol\[\left( P \right):y = {x^2} - 7x + 6\]

Hoành độ giao điểm của parabol (P) với trục hoành là\[{x^2} - 7x + 6 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 6}\end{array}} \right.\]

Diện tích hình phẳng giới hạn bởi (P) và trục hoành bằng

\[S = \mathop \smallint \limits_1^6 \left| {{x^2} - 7x + 6} \right|dx = \left| {\mathop \smallint \limits_1^6 \left( {{x^2} - 7x + 6} \right)dx} \right| = \frac{{125}}{6}\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.một đường thẳng.

B.một đường tròn.

C.một elip.

D.một điểm.

Lời giải

Bước 1:

Gọi\[z = x + yi\left( {x;y \in R} \right)\] khi đó\[\bar z = x - yi\]

Bước 2:

Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]

Vậy tập hợp điểm biểu diễn số phức z là một đường tròn.

Đáp án cần chọn là: B

Lời giải

Gọi\[z = x + yi\left( {x;y \in R} \right)\]  khi đó\[\bar z = x - yi\]

Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]

Vậy tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.B và C đối xứng với nhau qua trục tung.

B.Trọng tâm của tam giác ABC là G(1;23).

C.A và B đối xứng với nhau qua trục hoành.

D.A,B,C nằm trên đường tròn tâm tại gốc tọa độ và bán kính bằng \(\sqrt {13} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP