Câu hỏi:
29/06/2022 354Trên mặt phẳng tọa độ Oxy, gọi M là điểm biểu diễn hình học của số phức \[z = - 1 + 2i\;\] và \[\alpha \] là góc lượng giác có tia đầu Ox, tia cuối OM. Tính \[tan2\alpha .\]
Quảng cáo
Trả lời:
Ta có:\[z = - 1 + 2i\] có điểm biểu diễn là\[M\left( { - 1;\,\,2} \right).\]
Ta có:\[\tan AOM = \frac{{AM}}{{OA}} = \frac{2}{1} = 2.\]
\[ \Rightarrow \tan \alpha = - \tan AOM = - 2\] (hai góc bù nhau)
\[ \Rightarrow \tan 2\alpha = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} = \frac{{2.\left( { - 2} \right)}}{{1 - {{\left( { - 2} \right)}^2}}} = \frac{4}{3}\]
Đáp án cần chọn là: D
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bước 1:
Gọi\[z = x + yi\left( {x;y \in R} \right)\] khi đó\[\bar z = x - yi\]
Bước 2:
Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]
Vậy tập hợp điểm biểu diễn số phức z là một đường tròn.
Đáp án cần chọn là: B
Lời giải
Gọi\[z = x + yi\left( {x;y \in R} \right)\] khi đó\[\bar z = x - yi\]
Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]
Vậy tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.