Câu hỏi:
29/06/2022 228Gọi A và B lần lượt là điểm biểu diễn của số phức \[{z_1} = 3 - 2i\;\] và \[{z_2} = 1 + 4i.\] Trung điểm của đoạn thẳng AB có tọa độ là:
Quảng cáo
Trả lời:
Vì A và B lần lượt là điểm biểu diễn của số phức \[{z_1} = 3 - 2i\] và\[{z_2} = 1 + 4i\] nên\[A\left( {3; - 2} \right)\] và\[B\left( {1;4} \right)\]
Gọi M là trung điểm của AB \[ \Rightarrow M\left( {\frac{{3 + 1}}{2};\frac{{ - 2 + 4}}{2}} \right) \Rightarrow M\left( {2;1} \right)\]Đáp án cần chọn là: C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bước 1:
Gọi\[z = x + yi\left( {x;y \in R} \right)\] khi đó\[\bar z = x - yi\]
Bước 2:
Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]
Vậy tập hợp điểm biểu diễn số phức z là một đường tròn.
Đáp án cần chọn là: B
Lời giải
Gọi\[z = x + yi\left( {x;y \in R} \right)\] khi đó\[\bar z = x - yi\]
Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]
Vậy tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.