Câu hỏi:

29/06/2022 206

Cho các số phức \[{z_1} = 2,{z_2} = - 4i,{z_3} = 2 - 4i\] có điểm biểu diễn tương ứng trên mặt phẳng tọa độ Oxy là A, B, C. Diện tích tam giác ABC bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho các số phức z 1 = 2 , z 2 = − 4 i , z 3 = 2 − 4 i   có điểm biểu diễn tương ứng trên mặt phẳng tọa độ Oxy là A, B, C. Diện tích tam giác ABC bằng (ảnh 1)

Các điểm biểu diễn trên mặt phẳng tọa độ: A(2;0), B(0;-4), C(2;-4).

Ta thấy tam giác ABC vuông tại C với độ dài hai cạnh góc vuông là: 2 và 4.

\[{S_{ABC}} = \frac{1}{2}.AC.BC = \frac{1}{2}.4.2 = 4\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Bước 1:

Gọi\[z = x + yi\left( {x;y \in R} \right)\] khi đó\[\bar z = x - yi\]

Bước 2:

Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]

Vậy tập hợp điểm biểu diễn số phức z là một đường tròn.

Đáp án cần chọn là: B

Lời giải

Gọi\[z = x + yi\left( {x;y \in R} \right)\]  khi đó\[\bar z = x - yi\]

Ta có:\[z.\bar z = 1 \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 1 \Leftrightarrow {x^2} - {\left( {yi} \right)^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\]

Vậy tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP