Câu hỏi:
12/07/2024 190Trong mặt phẳng tọa độ, tập hợp các điểm M biểu diễn của số phức z thỏa mãn\[\left| {z + 1 + 3i} \right| = \left| {z - 2 - i} \right|\;\]là phương trình đường thẳng có dạng \[ax + by + c = 0\]. Khi đó tỉ số abab bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Bước 1:
Đặt \[z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right).\]
Bước 2: Biến đổi rút ra mối quan hệ giữa a,ba,b và suy ra quỹ tích các điểm biểu diễn số phức zz.
Theo bài ra ta có:
\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\,\left| {z + 1 + 3i} \right| = \left| {z - 2 - i} \right|}\\{ \Leftrightarrow \left| {a + bi + 1 + 3i} \right| = \left| {a + bi - 2 - i} \right|}\\{ \Leftrightarrow {{\left( {a + 1} \right)}^2} + {{\left( {b + 3} \right)}^2} = {{\left( {a - 2} \right)}^2} + {{\left( {b - 1} \right)}^2}}\\{ \Leftrightarrow {a^2} + 2a + 1 + {b^2} + 6b + 9 = {a^2} - 4a + 4 + {b^2} - 2b + 1}\\{ \Leftrightarrow 6a + 8b + 5 = 0}\end{array}\]
Suy ra tập hợp các điểm M biểu diễn số phức z là đường thẳng\[6x + 8y + 5 = 0\]
Vậy\[\frac{a}{b} = \frac{6}{8} = \frac{3}{4}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức z thỏa mãn \[z.\overline z = 1\;\] là:
Câu 2:
Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức z thỏa mãn \[z.\overline z = 1\;\] là đường tròn có bán kính là:
Câu 3:
Cho hai số phức \[{z_1},{z_2}\;\] thỏa mãn \[\left| {{z_1}} \right| = 6,\left| {{z_2}} \right| = 2\]. Gọi M,N lần lượt là các điểm biểu diễn của số phức \[{z_1}\] và số phức \[i{z_2}_{}\]. Biết \(\widehat {MON} = {60^ \circ }\). Tính \[T = \left| {z_1^2 + 9z_2^2} \right|\]
Câu 4:
Trên mặt phẳng tọa độ, điểm M là điểm biểu diển của số phức z (như hình vẽ bên). Điểm nào trong hình vẽ là điểm biểu diển của số phức 2z?
Câu 5:
Biết rằng điểm biểu diễn số phức z là điểm M ở hình bên dưới. Modun của z bằng:
Câu 6:
Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện \[\left| {z - i} \right| = 5\] và \[{z^2}\] là số thuần ảo?
Câu 7:
Trong mặt phẳng phức gọi A,B,C lần lượt là các điểm biểu diễn của các số phức \[{z_1} = 3 + 2i;{z_2} = 3 - 2i;{z_3} = - 3 - 2i\]. Khẳng định nào sau đây là sai?
về câu hỏi!