Câu hỏi:
29/06/2022 705Cho hình chóp S.ABC có đáy ABC vuông tại A và SB vuông góc với đáy. Biết SB=a,SC hợp với (SAB) một góc 300 và (SAC) hợp với đáy (ABC) một góc 600. Thể tích khối chóp là:
Quảng cáo
Trả lời:
Ta có:
\(\left. {\begin{array}{*{20}{c}}{AC \bot AB}\\{AC \bot SB(SB \bot (ABC))}\end{array}} \right\} \Rightarrow AC \bot (SAB) \Rightarrow AC \bot SA\)
⇒SA là hình chiếu vuông góc của SC trên
\[\left( {SAB} \right) \Rightarrow \widehat {\left( {SC;\left( {SAB} \right)} \right)} = \widehat {\left( {SC;SA} \right)} = \widehat {CSA} = {30^0}\]
\(\left. {\begin{array}{*{20}{c}}{(SAC) \cap (ABC) = AC}\\{(SAC) \supset SA \bot AC}\\{(ABC) \supset AB \bot AC}\end{array}} \right\} \Rightarrow ((SA\widehat {C);(A}BC))\)
\[SB \bot \left( {ABC} \right) \Rightarrow SB \bot AB \Rightarrow {\rm{\Delta }}SAB\] vuông tại B
\[ \Rightarrow AB = SB.\cot {60^0} = a.\frac{1}{{\sqrt 3 }} = \frac{{a\sqrt 3 }}{3}\]
\[ \Rightarrow SA = \sqrt {S{B^2} + A{B^2}} = \sqrt {{a^2} + \frac{{{a^2}}}{3}} = \frac{{2a}}{{\sqrt 3 }}\]
Xét tam giác vuông SAC ta có: \[AC = SA.\tan {30^0} = \frac{{2a}}{{\sqrt 3 }}.\frac{1}{{\sqrt 3 }} = \frac{{2a}}{3}\]
\[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}\frac{{a\sqrt 3 }}{3}.\frac{{2a}}{3} = \frac{{{a^2}\sqrt 3 }}{9}\]
\[{V_{S.ABC}} = \frac{1}{3}SB.{S_{ABC}} = \frac{1}{3}.a.\frac{{{a^2}\sqrt 3 }}{9} = \frac{{{a^3}\sqrt 3 }}{{27}}\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi H là hình chiếu của S lên (ABCD).
Khi đó, \[\widehat {SAH} = \widehat {SCH}\] vì hai góc này lần lượt là góc tạo bởi SA,SC với mặt phẳng đáy.
\[\widehat {SBH} = {45^0},\tan \widehat {SDH} = \frac{1}{3}\]
Tam giác\[{\rm{\Delta }}SAH = {\rm{\Delta }}SCH \Rightarrow HA = HC \Rightarrow H\] nằm trên trung trực của AC.
Mà BD là đường trung trực của AC nên\[H \in BD\]
Lại có\[\widehat {SBH} = {45^0} \Rightarrow HB = HS,\tan \widehat {SDH} = \frac{1}{3} = \frac{{SH}}{{HD}}\]
\[ \Rightarrow \frac{{HB}}{{HD}} = \frac{1}{3} \Rightarrow \frac{{HB}}{{BD}} = \frac{1}{4}\]
Mà\[BD = a\sqrt 2 \Rightarrow HB = \frac{{a\sqrt 2 }}{4} \Rightarrow SH = \frac{{a\sqrt 2 }}{4}\]
Vậy\[{V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{4}.{a^2} = \frac{{{a^3}\sqrt 2 }}{{12}}\]
Đáp án cần chọn là: D
Lời giải
\(\left. {\begin{array}{*{20}{c}}{(SAB) \bot (ABCD)}\\{(SAD) \bot (ABCD)}\\{(SAB) \cap (SAD) = SA}\end{array}} \right\} \Rightarrow SA \bot (ABCD)\)
⇒AC là hình chiếu vuông góc của SC trên
\[\left( {ABCD} \right) \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;AC} \right)} = \widehat {SCA} = {45^0}\]
(vì\[SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC \Rightarrow {\rm{\Delta }}SAC\] vuông tại\[A \Rightarrow \widehat {SCA} < {90^o}\])
\[ \Rightarrow SA = AC = a\sqrt 2 \]
\[{S_{ABCD}} = {a^2}\]
\[{S_{AMN}} = \frac{1}{2}AM.AN = \frac{1}{2}\frac{a}{2}\frac{a}{2} = \frac{{{a^2}}}{8}\]
\[{S_{BCM}} = \frac{1}{2}BM.BC = \frac{1}{2}\frac{a}{2}.a = \frac{{{a^2}}}{4}\]
\[ \Rightarrow {S_{MCDN}} = {S_{ABCD}} - {S_{AMN}} - {S_{BCM}} = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}\]
\[ \Rightarrow {V_{S.MCDN}} = \frac{1}{3}SA.{S_{MCDN}} = \frac{1}{3}a\sqrt 2 .\frac{{5{a^2}}}{8} = \frac{{5{a^3}\sqrt 2 }}{{24}}\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận