Câu hỏi:

29/06/2022 243

Cho hình chóp S.ABC có AB=AC=4,BC=2,SA=\(4\sqrt 3 \), \(\widehat {SAB} = \widehat {SAC} = {30^0}\). Tính thể tích khối chóp S.ABC.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABC có AB=AC=4,BC=2,SA= (ảnh 1)

Dễ thấy\[{\rm{\Delta }}SAB = {\rm{\Delta }}SAC\left( {c.g.c} \right)\]nên SB=SC hay tam giác\[{\rm{\Delta }}SBC\] cân.

Gọi M là trung điểm BC ta có: \[AM \bot BC,SM \bot BC \Rightarrow BC \bot \left( {SAM} \right)\]

Gọi H là hình chiếu của S trên AM thì\[SH \bot AM,SH \bot BC\] nên SH là đường cao của hình chóp.

Xét tam giác SAB có:

\[S{B^2} = S{A^2} + A{B^2} - 2SA.AB\cos {30^0} = 16 \Rightarrow SB = 4 \Rightarrow SC = 4\]

Do đó

\[S{M^2} = \frac{{S{B^2} + S{C^2}}}{2} - \frac{{B{C^2}}}{4} = 15 \Rightarrow SM = \sqrt {15} \]

Tam giác ABC có\[A{M^2} = \frac{{A{B^2} + A{C^2}}}{2} - \frac{{B{C^2}}}{4} = 15 \Rightarrow AM = \sqrt {15} \]

Khi đó\[{S_{SAM}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = 6\]

Do đó:\[SH = \frac{{2{S_{SAM}}}}{{AM}} = \frac{{2.6}}{{\sqrt {15} }} = \frac{{4\sqrt {15} }}{5}\]

\[{V_{S.ABC}} = \frac{1}{3}{S_{ABC}}.SH = \frac{1}{3}.\frac{1}{2}AM.BC.SH = \frac{1}{6}.\sqrt {15} .2.\frac{{4\sqrt {15} }}{5} = 4\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD  thành hai phần, phần chứa đỉnh S có thể tích bằng \[\frac{7}{{25}}\] lần phần còn lại. Tính tỉ số \[\frac{{IA}}{{IS}}\]?

Xem đáp án » 29/06/2022 2,152

Câu 2:

Cho khối chóp S.ABCD có thể tích bằng 4a3, đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SD. Biết diện tích tam giác SAB bằng a2. Tính khoảng cách từ M tới mặt phẳng (SAB).

Xem đáp án » 29/06/2022 1,658

Câu 3:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Đường thẳng SC tạo với đáy góc 450. Gọi M,N lần lượt là trung điểm của AB và AD. Thể tích của khối chóp S.MCDN là:

Xem đáp án » 29/06/2022 1,657

Câu 4:

Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt đáy và có độ dài là a. Thể tích khối tứ diện S.BCD bằng:

Xem đáp án » 29/06/2022 1,562

Câu 5:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc của S trên mặt đáy nằm trong hình vuông ABCD. Biết rằng SA và SC tạo với đáy các góc bằng nhau, góc giữa SB và đáy bằng 450, góc giữa SD và đáy bằng α với \[tan\alpha = \frac{1}{3}\]. Tính thể tích khối chóp đã cho.

Xem đáp án » 29/06/2022 1,164

Câu 6:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ABCD) và SA=a. Điểm M thuộc cạnh SA sao cho \(\frac{{SM}}{{SA}} = k\). Xác định k sao cho mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.

Xem đáp án » 29/06/2022 1,095

Câu 7:

Khối chóp có đáy là hình bình hành, một cạnh đáy bằng a và các cạnh bên đều bằng \(a\sqrt 2 \). Thể tích của khối chóp có giá trị lớn nhất là:

Xem đáp án » 29/06/2022 1,086

Bình luận


Bình luận