Câu hỏi:
29/06/2022 358Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD song song với BC, AD=2BC. Gọi E, F là hai điểm lần lượt nằm trên các cạnh AB và AD sao cho \[\frac{{3AB}}{{AE}} + \frac{{AD}}{{AF}} = 5\;\] (E,F không trùng với A), Tổng giá trị lớn nhất và giá trị nhỏ nhất của tỉ số thể tích hai khối chóp S.BCDFE và S.ABCD là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt \[\frac{{AE}}{{AB}} = x,\,\,\frac{{AF}}{{AD}} = y\,\,(0 < x,\,\,y \le 1)\]Theo bài ra ta có\[\frac{{3AB}}{{AE}} + \frac{{AD}}{{AF}} = 5\]
\[ \Rightarrow \frac{3}{x} + \frac{1}{y} = 5\,\,\,\left( 1 \right)\]
Vì hai khối chóp S.BCDFE và S.ABCD có cùng chiều cao nên
\[k = \frac{{{V_{S.BCDFE}}}}{{{V_{S.ABCD}}}} = \frac{{{S_{BCDFE}}}}{{{S_{ABCD}}}}\]
Đặt\[{S_{ABCD}} = S\] kẻ\[BH \bot AD\,\,\left( {H \in AD} \right)\]ta có
\[S = \frac{1}{2}BH.\left( {BC + AD} \right) = \frac{3}{2}.BH.BC\]
Ta có:\[\frac{{{S_{AEF}}}}{{{S_{ABD}}}} = \frac{{\frac{1}{2}AE.AF.\sin \angle BAD}}{{\frac{1}{2}AB.AD.\sin \angle BAD}} = xy \Rightarrow {S_{AEF}} = xy.{S_{ABD}}\]
Mà\[{S_{ABD}} = \frac{1}{2}BH.AD\]nên
\[{S_{AEF}} = \frac{1}{2}xy.BH.AD = xy.BH.BC = \frac{3}{2}BH.BC.\frac{2}{3}xy \Rightarrow {S_{AEF}} = \frac{2}{3}xy.S\]
\[ \Rightarrow {S_{BCDFE}} = {S_{ABCD}} - {S_{AEF}} = S - \frac{2}{3}xy.S = S\left( {1 - \frac{2}{3}xy} \right)\]
\[ \Rightarrow k = \frac{{S.\left( {1 - \frac{2}{3}xy} \right)}}{S} = 1 - \frac{2}{3}xy\]
Theo (1) ta có:\[\frac{3}{x} + \frac{1}{y} = 5 \Leftrightarrow y = \frac{x}{{5x - 3}}\]
Ta có
\[0 < \frac{x}{{5x - 3}} \le 1 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{x}{{5x - 3}} > 0}\\{\frac{{x - 5x + 3}}{{5x - 3}} \le 0}\end{array}} \right.\]</>
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5x - 3 > 0\,(do\,\,x > 0)}\\{3 - 4x \le 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > \frac{3}{5}}\\{x \ge \frac{3}{4}}\end{array}} \right. \Leftrightarrow x \ge \frac{3}{4}\)
Khi đó ta có
\[\begin{array}{*{20}{l}}{k = 1 - \frac{2}{3}xy = 1 - \frac{2}{3}x.\frac{x}{{5x - 3}}}\\{\,\,\,\, = 1 - \frac{{2{x^2}}}{{3\left( {5x - 3} \right)}} = \frac{{15x - 9 - 2{x^2}}}{{3\left( {5x - 3} \right)}} = f\left( x \right)}\end{array}\]
Xét hàm số\[f\left( x \right) = \frac{{ - 2{x^2} + 15x - 9}}{{3\left( {5x - 3} \right)}}\]với \[\frac{3}{4} \le x \le 1\]ta có:
\[f\prime (x) = {\frac{{( - 4x + 15).3(5x - 3) - ( - 2{x^2} + 15x - 9).15}}{{9{{(5x - 3)}^2}}}^{}}\]
\[f\prime (x) = \frac{{3( - 20{x^2} + 87x - 45) - ( - 30{x^2} + 225x - 135)}}{{9{{(5x - 3)}^2}}}\]
\[f\prime (x) = \frac{{ - 30{x^2} + 36x}}{{9{{(5x - 3)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{6}{5}\left( {ktm} \right)}\\{x = 0\left( {ktm} \right)}\end{array}} \right.\]
BBT:
\[ \Rightarrow {k_{\min }} = \frac{1}{2},\,\,{k_{\max }} = \frac{2}{3}\]
Vậy\[{k_{\min }} + {k_{\max }} = \frac{1}{2} + \frac{2}{3} = \frac{7}{6}\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD thành hai phần, phần chứa đỉnh S có thể tích bằng \[\frac{7}{{25}}\] lần phần còn lại. Tính tỉ số \[\frac{{IA}}{{IS}}\]?
Câu 2:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Đường thẳng SC tạo với đáy góc 450. Gọi M,N lần lượt là trung điểm của AB và AD. Thể tích của khối chóp S.MCDN là:
Câu 3:
Cho khối chóp S.ABCD có thể tích bằng 4a3, đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SD. Biết diện tích tam giác SAB bằng a2. Tính khoảng cách từ M tới mặt phẳng (SAB).
Câu 4:
Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt đáy và có độ dài là a. Thể tích khối tứ diện S.BCD bằng:
Câu 5:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc của S trên mặt đáy nằm trong hình vuông ABCD. Biết rằng SA và SC tạo với đáy các góc bằng nhau, góc giữa SB và đáy bằng 450, góc giữa SD và đáy bằng α với \[tan\alpha = \frac{1}{3}\]. Tính thể tích khối chóp đã cho.
Câu 6:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ABCD) và SA=a. Điểm M thuộc cạnh SA sao cho \(\frac{{SM}}{{SA}} = k\). Xác định k sao cho mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.
Câu 7:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích khối chóp S.ABC?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!