Câu hỏi:
29/06/2022 306Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 2, \[\angle BAD = {60^0}\], SA=SC và tam giác SBD vuông cân tại S. Gọi E là trung điểm của SC. Mặt phẳng (P) qua AE và cắt hai cạnh SB,SD lần lượt tại M và N. Thể tích lớn nhất V0 của khối đa diện ABCDNEM bằng:
Quảng cáo
Trả lời:
Gọi\[O = AC \cap BD\]ta có:
\[SA = SC \Rightarrow {\rm{\Delta }}SAC\]cân tại \[S \Rightarrow SO \bot AC\]
Tam giác SBD vuông cân tại\[S \Rightarrow SO \bot BD\]
\[ \Rightarrow SO \bot \left( {ABCD} \right)\]
Trong (SBD), gọi\[I = MN \cap BD\]
Đặt \[\frac{{SM}}{{SB}} = x,\,\,\frac{{SN}}{{SD}} = y\,\,(0 < x,\,\,y < 1)\]
Ta có:\[\frac{{{V_{S.AME}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SE}}{{SC}} = \frac{1}{2}x \Rightarrow \frac{{{V_{S.AME}}}}{{{V_{S.ABCD}}}} = \frac{1}{4}x\]
\[\frac{{{V_{S.ANE}}}}{{{V_{S.ADC}}}} = \frac{{SN}}{{SD}}.\frac{{SE}}{{SC}} = \frac{1}{2}y \Rightarrow \frac{{{V_{S.ANE}}}}{{{V_{S.ABCD}}}} = \frac{1}{4}y\]
\[ \Rightarrow \frac{{{V_{S.AMNE}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.AME}}}}{{{V_{S.ABCD}}}} + \frac{{{V_{S.ANE}}}}{{{V_{S.ABCD}}}} = \frac{{x + y}}{4}\,\,\,\left( 1 \right)\]
Ta lại có:\[\frac{{{V_{S.AMN}}}}{{{V_{S.ABD}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SD}} = xy \Rightarrow \frac{{{V_{S.AMN}}}}{{{V_{S.ABCD}}}} = \frac{{xy}}{2}\]
\[\frac{{{V_{S.MNE}}}}{{{V_{S.BDC}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SD}}.\frac{{SE}}{{SC}} = \frac{1}{2}xy \Rightarrow \frac{{{V_{S.MNE}}}}{{{V_{S.ABCC}}}} = \frac{{xy}}{4}\]
\[ \Rightarrow \frac{{{V_{S.AMNE}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.AMN}}}}{{{V_{S.ABCD}}}} + \frac{{{V_{S.MNE}}}}{{{V_{S.ABCD}}}} = \frac{{xy}}{2} + \frac{{xy}}{4} = \frac{{3xy}}{4}\,\,\left( 2 \right)\]
Từ (1) và (2) \[ \Rightarrow \frac{{x + y}}{4} = \frac{{3xy}}{4} \Leftrightarrow x + y = 3xy\]
\[ \Leftrightarrow x = \left( {3x - 1} \right)y \Leftrightarrow y = \frac{x}{{3x - 1}}\,\,\left( {x \ne \frac{1}{3}} \right)\]
Do \[x,\,\,y > 0 \Rightarrow 3x - 1 > 0 \Leftrightarrow x > \frac{1}{3}\]
Khi đó ta có\[\frac{{{V_{S.AMNE}}}}{{{V_{S.ABCD}}}} = \frac{1}{4}\left( {x + \frac{x}{{3x - 1}}} \right)\]
Xét hàm số \[f\left( x \right) = x + \frac{x}{{3x - 1}}\,\,\left( {x > \frac{1}{3}} \right)\]ta có:
\[f'\left( x \right) = 1 - \frac{1}{{{{\left( {3x - 1} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x - 1 = 1}\\{3x - 1 = - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{2}{3}}\\{x = 0\left( {ktm} \right)}\end{array}} \right.\]
BBT:
Dựa vào BBT ta thấy\[\min {V_{S.AMNE}} = \frac{1}{4}.\frac{4}{3}{V_{S.ABCD}} = \frac{1}{3}{V_{S.ABCD}}\]
\[ \Rightarrow \max {V_{ABCDNEM}} = \frac{2}{3}{V_{S.ABCD}} \Rightarrow {V_0} = \frac{2}{3}{V_{S.ABCD}}\]
Ta có: \[{\rm{\Delta }}ABD\]đều cạnh 2 \[\left( {AB = AD,\,\angle BAD = {{60}^0}} \right) \Rightarrow {S_{ABD}} = \frac{{{2^2}\sqrt 3 }}{4} = \sqrt 3 \]
\[ \Rightarrow {S_{ABCD}} = 2\sqrt 3 \]
Tam giác ABD đều cạnh 2 ⇒BD=2, lại có tam giác SBD vuông cân tại S nên
\[SO = \frac{1}{2}BD = 1\]
\[ \Rightarrow {V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.1.2\sqrt 3 = \frac{{2\sqrt 3 }}{3}\]
Vậy\[{V_0} = \frac{2}{3}{V_{S.ABCD}} = \frac{{4\sqrt 3 }}{9}\]Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi H là hình chiếu của S lên (ABCD).
Khi đó, \[\widehat {SAH} = \widehat {SCH}\] vì hai góc này lần lượt là góc tạo bởi SA,SC với mặt phẳng đáy.
\[\widehat {SBH} = {45^0},\tan \widehat {SDH} = \frac{1}{3}\]
Tam giác\[{\rm{\Delta }}SAH = {\rm{\Delta }}SCH \Rightarrow HA = HC \Rightarrow H\] nằm trên trung trực của AC.
Mà BD là đường trung trực của AC nên\[H \in BD\]
Lại có\[\widehat {SBH} = {45^0} \Rightarrow HB = HS,\tan \widehat {SDH} = \frac{1}{3} = \frac{{SH}}{{HD}}\]
\[ \Rightarrow \frac{{HB}}{{HD}} = \frac{1}{3} \Rightarrow \frac{{HB}}{{BD}} = \frac{1}{4}\]
Mà\[BD = a\sqrt 2 \Rightarrow HB = \frac{{a\sqrt 2 }}{4} \Rightarrow SH = \frac{{a\sqrt 2 }}{4}\]
Vậy\[{V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{4}.{a^2} = \frac{{{a^3}\sqrt 2 }}{{12}}\]
Đáp án cần chọn là: D
Lời giải
\(\left. {\begin{array}{*{20}{c}}{(SAB) \bot (ABCD)}\\{(SAD) \bot (ABCD)}\\{(SAB) \cap (SAD) = SA}\end{array}} \right\} \Rightarrow SA \bot (ABCD)\)
⇒AC là hình chiếu vuông góc của SC trên
\[\left( {ABCD} \right) \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;AC} \right)} = \widehat {SCA} = {45^0}\]
(vì\[SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC \Rightarrow {\rm{\Delta }}SAC\] vuông tại\[A \Rightarrow \widehat {SCA} < {90^o}\])
\[ \Rightarrow SA = AC = a\sqrt 2 \]
\[{S_{ABCD}} = {a^2}\]
\[{S_{AMN}} = \frac{1}{2}AM.AN = \frac{1}{2}\frac{a}{2}\frac{a}{2} = \frac{{{a^2}}}{8}\]
\[{S_{BCM}} = \frac{1}{2}BM.BC = \frac{1}{2}\frac{a}{2}.a = \frac{{{a^2}}}{4}\]
\[ \Rightarrow {S_{MCDN}} = {S_{ABCD}} - {S_{AMN}} - {S_{BCM}} = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}\]
\[ \Rightarrow {V_{S.MCDN}} = \frac{1}{3}SA.{S_{MCDN}} = \frac{1}{3}a\sqrt 2 .\frac{{5{a^2}}}{8} = \frac{{5{a^3}\sqrt 2 }}{{24}}\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận