Câu hỏi:
29/06/2022 298Khối chóp tam giác có độ dài 3 cạnh xuất phát từ một đỉnh là a,2a,3a có thể tích lớn nhất bằng
Quảng cáo
Trả lời:
Giả sử khối chóp ABCD có \[AB = a,\,\,AC = 2a,\,\,AD = 3a\]
Gọi H là hình chiếu vuông góc của D lên (ABC), khi đó ta có:\[DH \bot \left( {ABC} \right)\] và\[DH \le AD\]
Ta có: \[{S_{ABC}} = \frac{1}{2}AB.AC.\sin \angle BAC \le \frac{1}{2}AB.AC\]
Vây\[{V_{ABCD}} = \frac{1}{3}DH.{S_{{\rm{\Delta }}ABC}} \le \frac{1}{3}AD.\frac{1}{2}AB.AC = \frac{1}{6}AB.AC.AD = \frac{1}{6}.a.2a.3a = {a^3}\]
Dấu “=” xảy ra\[ \Leftrightarrow AD \bot \left( {ABC} \right),\,\,AB \bot AC\] hay AB,AC,AD đôi một vuông góc.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi H là hình chiếu của S lên (ABCD).
Khi đó, \[\widehat {SAH} = \widehat {SCH}\] vì hai góc này lần lượt là góc tạo bởi SA,SC với mặt phẳng đáy.
\[\widehat {SBH} = {45^0},\tan \widehat {SDH} = \frac{1}{3}\]
Tam giác\[{\rm{\Delta }}SAH = {\rm{\Delta }}SCH \Rightarrow HA = HC \Rightarrow H\] nằm trên trung trực của AC.
Mà BD là đường trung trực của AC nên\[H \in BD\]
Lại có\[\widehat {SBH} = {45^0} \Rightarrow HB = HS,\tan \widehat {SDH} = \frac{1}{3} = \frac{{SH}}{{HD}}\]
\[ \Rightarrow \frac{{HB}}{{HD}} = \frac{1}{3} \Rightarrow \frac{{HB}}{{BD}} = \frac{1}{4}\]
Mà\[BD = a\sqrt 2 \Rightarrow HB = \frac{{a\sqrt 2 }}{4} \Rightarrow SH = \frac{{a\sqrt 2 }}{4}\]
Vậy\[{V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{4}.{a^2} = \frac{{{a^3}\sqrt 2 }}{{12}}\]
Đáp án cần chọn là: D
Lời giải
\(\left. {\begin{array}{*{20}{c}}{(SAB) \bot (ABCD)}\\{(SAD) \bot (ABCD)}\\{(SAB) \cap (SAD) = SA}\end{array}} \right\} \Rightarrow SA \bot (ABCD)\)
⇒AC là hình chiếu vuông góc của SC trên
\[\left( {ABCD} \right) \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;AC} \right)} = \widehat {SCA} = {45^0}\]
(vì\[SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC \Rightarrow {\rm{\Delta }}SAC\] vuông tại\[A \Rightarrow \widehat {SCA} < {90^o}\])
\[ \Rightarrow SA = AC = a\sqrt 2 \]
\[{S_{ABCD}} = {a^2}\]
\[{S_{AMN}} = \frac{1}{2}AM.AN = \frac{1}{2}\frac{a}{2}\frac{a}{2} = \frac{{{a^2}}}{8}\]
\[{S_{BCM}} = \frac{1}{2}BM.BC = \frac{1}{2}\frac{a}{2}.a = \frac{{{a^2}}}{4}\]
\[ \Rightarrow {S_{MCDN}} = {S_{ABCD}} - {S_{AMN}} - {S_{BCM}} = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}\]
\[ \Rightarrow {V_{S.MCDN}} = \frac{1}{3}SA.{S_{MCDN}} = \frac{1}{3}a\sqrt 2 .\frac{{5{a^2}}}{8} = \frac{{5{a^3}\sqrt 2 }}{{24}}\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận