Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại BB có cạnh AB=3, BC=4và góc giữa DC và mặt phẳng (ABC) bằng 450. Tính thể tích mặt cầu ngoại tiếp tứ diện.
Quảng cáo
Trả lời:
Ta có : \(\left\{ {\begin{array}{*{20}{c}}{BC \bot BA}\\{BC \bot DA}\end{array}} \right. \Rightarrow BC \bot (ABD) \Rightarrow BC \bot BD \Rightarrow \Delta BCD\) vuông tại B.
Gọi I là trung điểm của CD thì \[IB = IC = ID = \frac{1}{2}CD\]
Tam giác ACD vuông tại A nên \[IA = IC = ID = \frac{1}{2}CD\]
Do đó \[IA = IB = IC = ID \Rightarrow I\] là tâm mặt cầu ngoại tiếp tứ diện ABCDABCD.
Tam giác ABC vuông tại B nên \[AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{3^2} + {4^2}} = 5\] (Định lí Pytago).
Vì\[DA \bot \left( {ABC} \right)\] nên ACAC là hình chiếu của DCDC lên (ABC).\[ \Rightarrow \angle \left( {DC;\left( {ABC} \right)} \right) = \angle \left( {DC;AC} \right) = \angle DCA = {45^0}\]
Tam giác DAC vuông tại A có \[\widehat {DCA} = {45^0}\] nên là tam giác vuông cân
\[ \Rightarrow DC = AC\sqrt 2 = 5\sqrt 2 \]
\[ \Rightarrow R = IA = \frac{1}{2}DC = \frac{{5\sqrt 2 }}{2}\]
Vậy thể tích khối cầu ngoại tiếp tứ diện ABCD là :\[V = \frac{4}{3}\pi I{A^3} = \frac{4}{3}\pi .{\left( {\frac{{5\sqrt 2 }}{2}} \right)^3} = \frac{{125\sqrt 2 }}{3}\pi \]
Đáp án cần chọn là: C
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có đường kính mặt cầu là 60.2=120(cm).
Mà khoảng cách giữa hai đáy của thùng rượu là 80cm
Nên chiều cao chỏm cầu là \[h = \frac{{120 - 80}}{2} = 20\,\,\left( {cm} \right).\]Thế tích của 1 chỏm cầu chiều cao h = 20 và bán kính 60cm là
\[{V_{cc}} = \pi {h^2}\left( {R - \frac{h}{3}} \right) = \pi {.20^2}\left( {60 - \frac{{20}}{3}} \right) = \frac{{64000}}{3}\pi \,\,\left( {c{m^3}} \right) = \frac{{64\pi }}{3}\,\,\left( l \right)\]
Thể tích của cả khối cầu bán kính 60 cm là \[V = \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi {.60^3} = 288000\pi \,\,\left( {c{m^3}} \right) = 288\pi \,\,\left( l \right)\]
Khi đó thể tích thùng rượu là \[V' = V - 2{V_{cc}} = \frac{{736}}{3}\pi \,\,\left( l \right) \approx 771\,\,\left( l \right).\]
Đáp án cần chọn là: A
Lời giải
Gọi O1,O2 lần lượt là tâm mặt cầu (S1),(S2). Hai mặt cầu này cắt nhau theo giao tuyến là đường tròn (C) có tâm I.
Gọi A, B là một đường kính của đường tròn giao tuyến như hình vẽ, ta có AB là trung trực của O1O2, do đó I là trung điểm của \[{O_1}{O_2} \Rightarrow I{O_1} = I{O_2} = \frac{1}{2}{O_1}{O_2} = \frac{R}{2} = 1\]Thể tích phần chung chính là tổng thể tích của hai khối chỏm cầu bằng nhau có bán kính R = 2, chiều cao \[h = \frac{R}{2} = 1\]Vậy \[V = 2.\pi {h^2}\left( {R - \frac{h}{3}} \right) = 2\pi {.1^2}\left( {2 - \frac{1}{3}} \right) = \frac{{10\pi }}{3}\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.