Trong không gian với hệ tọa độ Oxyz, tìm tập tất cả giá trị của tham số m để mặt cầu (S) có phương trình \[{x^2} + {y^2} + {z^2} - 2x + 2my - 4z + m + 5 = 0\] đi qua điểm A(1;1;1).
A.\[\emptyset \]
B. \[\left\{ { - \frac{2}{3}} \right\}\]
C. \[\left\{ 0 \right\}\]
D. \[\left\{ {\frac{1}{2}} \right\}\]
Quảng cáo
Trả lời:

(S) có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\] với\[a = - 1,b = m,c = - 2\]
và\[d = m + 5\]
(S) là phương trình mặt cầu khi ta có
\[{a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow 5 + {m^2} - (m + 5) > 0 \Leftrightarrow {m^2} - m > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 1}\\{m < 0}\end{array}} \right.\]
Điểm A(1,1,1) thuộc phương trình mặt cầu
\[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 2my - 4z + m + 5 = 0\] thì ta có
\[{1^2} + {1^2} + {1^2} - 2.1 + 2m.1 - 4.1 + m + 5 = 0 \Leftrightarrow 2 + 3m = 0 \Leftrightarrow m = - \frac{2}{3}\]
(thỏa mãn)
Đáp án cần chọn là: B
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[{x^2} + {y^2} + {z^2} - 2x - 2y - 2z - 8 = 0.\]
B. \[{(x + 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 9.\]
C. \[2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0\]
D. \[3{x^2} + 3{y^2} + 3{z^2} - 6x + 12y - 24z + 16 = 0\]
Lời giải
Phương trình đáp án B có dạng\[{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\]với\[a = - 1,b = 2,c = 1\]và R=3 là phương trình mặt cầu.
Phương trình đáp án A có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\]với\[a = - 1,b = - 1,c = - 1,d = - 8\]có\[R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {11} \]là một phương trình mặt cầu.
Xét phương án C có
\[2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\]
Phương trình có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\]với\[a = 1,b = - \frac{1}{2},c = - \frac{1}{2},d = 8\] có\[{a^2} + {b^2} + {c^2} - d = 1 + \frac{1}{4} + \frac{1}{4} - 8 < 0.\]
Không phải là phương trình mặt cầu.
Đáp án cần chọn là: C
Lời giải
(S) có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\] với\[a = - 1,b = - 1,c = - 2\] và d=m
(S)là phương trình mặt cầu khi ta có \[{a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow 6 - m > 0 \Leftrightarrow m < 6\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[{(x - 1)^2} + {y^2} + {z^2} = \sqrt {13} \]
B. \[{(x - 1)^2} + {y^2} + {z^2} = 13\]
C. \[{(x + 1)^2} + {y^2} + {z^2} = 17\]
D. \[{(x + 1)^2} + {y^2} + {z^2} = 13\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[2\sqrt 6 .\]
B. \[2\sqrt 2 .\]
C. \(4\sqrt 2 \)
D. \(\sqrt 6 \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.M(3;6;9)
B.M(1;2;−9)
C.M(1;2;9)
D.M(−1;−2;1)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 10 = 0\]
B. \[{x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 2 = 0\]
C. \[{x^2} + {y^2} + {z^2} + 4x - 2y + 6z + 2 = 0\]
D. \[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 2 = 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.