Câu hỏi:

30/06/2022 184

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \[d:\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z + 1}}{{ - 1}}\;\] và điểm A(5,4,−2). Phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử M là giao điểm của d với mặt phẳng (Oxy).

Viết phương trình đường thẳng d dưới dạng tham số\(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 1 + 2t}\\{z = - 1 - t}\end{array}} \right.\)

Ta có M thuộc d nên\[M\left( {t,2t + 1, - t - 1} \right)\]

Vì M thuộc \[\left( {Oxy} \right):z = 0\]nên có \[ - t - 1 = 0\] hay t=−1, suy ra M(−1,−1,0).

Phương trình mặt cầu cần tìm có tâm M(−1,−1,0), bán kính

\[MA = \sqrt {{{(5 + 1)}^2} + {{(4 + 1)}^2} + {{( - 2 - 0)}^2}} = \sqrt {65} \]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương trình đáp án B có dạng\[{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\]với\[a = - 1,b = 2,c = 1\]và R=3 là phương trình mặt cầu.

Phương trình đáp án A có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\]với\[a = - 1,b = - 1,c = - 1,d = - 8\]có\[R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {11} \]là một phương trình mặt cầu.

Xét phương án C có

\[2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\]

Phương trình có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\]với\[a = 1,b = - \frac{1}{2},c = - \frac{1}{2},d = 8\] có\[{a^2} + {b^2} + {c^2} - d = 1 + \frac{1}{4} + \frac{1}{4} - 8 < 0.\]

Không phải là phương trình mặt cầu.

Đáp án cần chọn là: C

Lời giải

(S) có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\] với\[a = - 1,b = - 1,c = - 2\] và d=m

(S)là phương trình mặt cầu khi ta có \[{a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow 6 - m > 0 \Leftrightarrow m < 6\]

Đáp án cần chọn là: D

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP