Câu hỏi:
30/06/2022 140Trong không gian Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} - 2x + 4y + 1 = 0\]. Tính diện tích của mặt cầu (S).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Mặt cầu\[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y + 1 = 0\]có bán kính
\[R = \sqrt {{1^2} + {2^2} + {0^2} - 1} = 2\]
Vậy diện tích của mặt cầu (S) là: \[4\pi {.2^2} = 16\pi \]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ trục tọa độ Oxyz, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;−2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình của mặt cầu tâm I, bán kính IM?
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2,1,−1) và B(1,0,1). Mặt cầu đi qua hai điểm A,B và có tâm thuộc trục Oy có đường kính là
Câu 4:
Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của m để phương trình \[{x^2} + {y^2} + {z^2} - 2x - 2y - 4z + m = 0\] là phương trình của một mặt cầu.
Câu 5:
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm M(2;3;3),N(2;−1;−1),P(−2;−1;3) và có tâm thuộc mặt phẳng (α):2x+3y−z+2=0.
Câu 6:
Trong không gian Oxyz, cho hai điểm A(1;2;3),B(4;−7;−9), tập hợp các điểm M thỏa mãn \[2M{A^2} + M{B^2} = 165\] là mặt cầu có tâm I(a;b;c) và bán kính R. Giá trị biểu thức \[T = {a^2} + {b^2} + {c^2} + {R^2}\] bằng:
Câu 7:
Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) có tâm I(1,2,−3) và đi qua điểm A(1,0,4) có phương trình là
về câu hỏi!