Câu hỏi:
30/06/2022 172Trong không gian Oxyz cho 3 véc tơ: \[\overrightarrow a \left( {4;2;5} \right),\overrightarrow b \left( {3;1;3} \right),\overrightarrow c \left( {2;0;1} \right)\]. Kết luận nào sau đây đúng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Tính\[\left[ {\vec a,\vec b} \right] = \left( {\left| {\begin{array}{*{20}{c}}2&5\\1&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}5&4\\3&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&2\\3&1\end{array}} \right|} \right) = \left( {1;3; - 2} \right)\]Suy ra loại A
Tính \[\left[ {\vec a,\vec b} \right].\vec c = \left( {1;3; - 2} \right).\left( {2;0;1} \right) = 0\] Suy ra\[\vec a,\vec b,\vec c\]đồng phẳng.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có A(2;−1;1), B(3;0;−1), C(2;−1;3) và D thuộc trục Oy . Tính tổng tung độ của các điểm D, biết thể tích tứ diện bằng 5 .
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho ba điểmA(1;1;1),B(−1;−1;0) và C(3;1;−1). Tìm tọa độ điểm M thuộc (Oxy) và cách đều các điểm A,B,C .
Câu 3:
Cho hai điểm A(1;2;−1) và B(−1;3;1). Tọa độ điểm M nằm trên trục tung sao cho tam giác ABM vuông tại M .
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−2;3),B(1;0;−1). Gọi M là trung điểm đoạn AB. Khẳng định nào sau đây là đúng?
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2;−1) , B(2;0;1). Tìm tọa độ điểm M nằm trên trục Ox sao cho :MA2+MB2 đạt giá trị bé nhất.
Câu 6:
Trong không gian Oxyz, cho hai điểm A(4;0;4) và B(2;4;0). Điểm M di động trên tia Oz, điểm N di động trên tia Oy. Đường gấp khúc AMNB có độ dài nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng phần chục).
Câu 7:
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1),B(2;−1;3),C(−3;5;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
về câu hỏi!