Bài toán về điểm và vectơ

  • 583 lượt thi

  • 19 câu hỏi

  • 30 phút

Câu 1:

Trong không gian với hệ tọa độ Oxyz , cho điểm M thỏa mãn hệ thức \(\overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \)Tọa độ của điểm  M là

Xem đáp án

Ta có:\[\overrightarrow {OM} = 2\vec i + \vec j \Rightarrow \overrightarrow {OM} = 2.\vec i + 1.\vec j + 0.\vec k \Leftrightarrow M\left( {2;1;0} \right)\]

Đáp án cần chọn là: D


Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow {OM} = 2\overrightarrow j - \overrightarrow k \) và \(\overrightarrow {ON} = 2\overrightarrow j - 3\overrightarrow i \). Tọa độ của \(\overrightarrow {MN} \)là: 

Xem đáp án

Ta có: \[\overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} = \left( {2\vec j - 3\vec i} \right) - \left( {2\vec j - \vec k} \right) = - 3\vec i + \vec k\]

Suy ra\[\overrightarrow {MN} = \left( { - 3;0;1} \right)\]

Đáp án cần chọn là: A


Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−2;3),B(1;0;−1).  Gọi M là trung điểm đoạn  AB. Khẳng định nào sau đây là đúng? 

Xem đáp án

Ta có:\[\overrightarrow {BA} = (0 - 1; - 2 - 0;3 + 1) = ( - 1; - 2;4)\] Suy ra A sai.

Suy ra\[\overrightarrow {AB} = (1;2; - 4)\] D sai.

Có \[AB = \sqrt {{1^2} + {2^2} + {{( - 4)}^2}} = \sqrt {21} \]  B đúng.

Mà M là trung điểm của AB nên M\[M\left( {\frac{1}{2}; - 1;1} \right)\] C sai.

Đáp án cần chọn là: B


Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(2;−3;5),N(6;−4;−1) và đặt  \(u = \left| {\overrightarrow {MN} } \right|\) Mệnh đề nào sau đây là mệnh đề đúng?

Xem đáp án

Ta có\[\overrightarrow {MN} = (6 - 2; - 4 + 3; - 1 - 5) = (4; - 1; - 6)\]

Do đó\[|\overrightarrow {MN} | = \sqrt {{4^2} + {{( - 1)}^2} + {{( - 6)}^2}} = \sqrt {53} \]

Đáp án cần chọn là: B


Câu 5:

Trong không gian Oxyz cho ba vecto \[\overrightarrow a = \left( { - 1;1;0} \right),\overrightarrow b = \left( {1;1;0} \right),\overrightarrow c = \left( {1;1;1} \right)\]. Mệnh đề nào dưới đây sai?

Xem đáp án

Kiểm tra lần lượt các điều kiện

\(\left\{ {\begin{array}{*{20}{c}}{\left| {\overrightarrow a } \right| = \sqrt {{{( - 1)}^2} + {1^2} + {0^2}} = \sqrt 2 }\\{\left| {\overrightarrow c } \right| = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 }\\{\overrightarrow a .\overrightarrow b = ( - 1).1 + 1.1 + 0.0 = 0 \Rightarrow \overrightarrow a \bot \overrightarrow b }\end{array}} \right.\)

Lại có:\[\vec b.\vec c = 1.1 + 1.1 + 0.1 = 2 \ne 0\] nên\[\vec b\]và\[\vec c\]không vuông góc.

Đáp án cần chọn là: D


0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận