Câu hỏi:
30/06/2022 449Trong không gian với hệ tọa độ Oxyz, cho ba vectơ \[\overrightarrow a = \left( {3; - 1; - 2} \right),\overrightarrow b = \left( {1;2;m} \right)\;\]và \[\overrightarrow c = \left( {5;1;7} \right).\]Giá trị mm bằng bao nhiêu để \[\overrightarrow c = \left[ {\overrightarrow a ,\overrightarrow b } \right].\;\]
Quảng cáo
Trả lời:
Ta có:
\[\left[ {\vec a,\vec b} \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\2&m\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&3\\m&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 1}\\1&2\end{array}} \right|} \right) = \left( { - m + 4; - 2 - 3m;7} \right)\]
\[\overrightarrow c = \left[ {\overrightarrow a ,\overrightarrow b } \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - m + 4 = 5}\\{ - 2 - 3m = 1}\\{7 = 7}\end{array}} \right. \Leftrightarrow m = - 1\]
Đáp án cần chọn là: A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử\[D\left( {0;y;0} \right) \in Oy\]ta có:
\[\overrightarrow {AB} = (1;1; - 2),\overrightarrow {AC} = (0;0;2),\overrightarrow {AD} = ( - 2;y + 1; - 1)\]
Ta có\[\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {2; - 2;0} \right)\]
Theo công thức tính thể tích ta có
\[{V_{ABCD}} = \frac{1}{6}.\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = \frac{1}{6}\left| {\left[ {2.( - 2) - 2.(y + 1) + 0.( - 1)} \right]} \right| = \frac{1}{6}\left| {6 + 2y} \right|\]
Theo giả thiết ta có\[{V_{ABCD}} = 5\]suy ra ta có:
\(\frac{1}{6}|6 + 2y| = 5 \Leftrightarrow |6 + 2y| = 30 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2y + 6 = 30}\\{2y + 6 = - 30}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y = 12}\\{y = - 18}\end{array}} \right.} \right.\)
Suy ra D(0;12;0) hoặc D(0;−18;0)
Do đó tổng tung độ của các điểm D là \[12 + ( - 18) = - 6\]
Đáp án cần chọn là: A
Lời giải
M thuộc mặt phẳng (Oxy), giả sử M(m;n;0).
Ta có
\[\begin{array}{*{20}{l}}{MA = \sqrt {{{(m - 1)}^2} + {{(n - 1)}^2} + {{(0 - 1)}^2}} = \sqrt {{{(m - 1)}^2} + {{(n - 1)}^2} + 1} }\\{MB = \sqrt {{{(m + 1)}^2} + {{(n + 1)}^2} + {{(0 - 0)}^2}} = \sqrt {{{(m + 1)}^2} + {{(n + 1)}^2}} }\\{MC = \sqrt {{{(m - 3)}^2} + {{(n - 1)}^2} + {{(0 + 1)}^2}} = \sqrt {{{(m - 3)}^2} + {{(n - 1)}^2} + 1} }\end{array}\]
Vì M cách đều ba điểm A,B,C nên ta có MA=MB=MC.
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{MA = MB}\\{MA = MC}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{M{A^2} = M{B^2}}\\{M{A^2} = M{C^2}}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{(m - 1)}^2} + {{(n - 1)}^2} + 1 = {{(m + 1)}^2} + {{(n + 1)}^2}}\\{{{(m - 1)}^2} + {{(n - 1)}^2} + 1 = {{(m - 3)}^2} + {{(n - 1)}^2} + 1}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4m + 4n = 1}\\{4m = 8}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = 2}\\{n = - \frac{7}{4}}\end{array}} \right.\)
Vậy\[M\left( {2; - \frac{7}{4};0} \right)\]
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.