Câu hỏi:
30/06/2022 340Trong không gian với hệ tọa độ Oxyz, cho ba vectơ \[\overrightarrow a = \left( {3; - 1; - 2} \right),\overrightarrow b = \left( {1;2;m} \right)\;\]và \[\overrightarrow c = \left( {5;1;7} \right).\]Giá trị mm bằng bao nhiêu để \[\overrightarrow c = \left[ {\overrightarrow a ,\overrightarrow b } \right].\;\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
\[\left[ {\vec a,\vec b} \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\2&m\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&3\\m&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 1}\\1&2\end{array}} \right|} \right) = \left( { - m + 4; - 2 - 3m;7} \right)\]
\[\overrightarrow c = \left[ {\overrightarrow a ,\overrightarrow b } \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - m + 4 = 5}\\{ - 2 - 3m = 1}\\{7 = 7}\end{array}} \right. \Leftrightarrow m = - 1\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có A(2;−1;1), B(3;0;−1), C(2;−1;3) và D thuộc trục Oy . Tính tổng tung độ của các điểm D, biết thể tích tứ diện bằng 5 .
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho ba điểmA(1;1;1),B(−1;−1;0) và C(3;1;−1). Tìm tọa độ điểm M thuộc (Oxy) và cách đều các điểm A,B,C .
Câu 3:
Cho hai điểm A(1;2;−1) và B(−1;3;1). Tọa độ điểm M nằm trên trục tung sao cho tam giác ABM vuông tại M .
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2;−1) , B(2;0;1). Tìm tọa độ điểm M nằm trên trục Ox sao cho :MA2+MB2 đạt giá trị bé nhất.
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−2;3),B(1;0;−1). Gọi M là trung điểm đoạn AB. Khẳng định nào sau đây là đúng?
Câu 6:
Trong không gian Oxyz, cho hai điểm A(4;0;4) và B(2;4;0). Điểm M di động trên tia Oz, điểm N di động trên tia Oy. Đường gấp khúc AMNB có độ dài nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng phần chục).
Câu 7:
Cho hình bình hành ABCD với A(2;4;−4),B(1;1;−3),C(−2;0;5),D(−1;3;4). Diện tích của hình bình hành ABCD bằng
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Câu hỏi điền từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
về câu hỏi!