Câu hỏi:
30/06/2022 483Cho hình lập phương ABCD.A′B′C′D′. Côsin góc giữa hai mặt phẳng (A′BC) và (ABC′) bằng:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gắn hệ trục tọa độ như hình vẽ, coi hình lập phương có cạnh bằng 1 ta có:
\[A\left( {0;0;0} \right),B\left( {1;0;0} \right),C\left( {1;1;0} \right),A'\left( {0;0;1} \right),C'\left( {1;1;1} \right)\]
Ta có:\[\overrightarrow {A'B} = \left( {1;0; - 1} \right),\,\,\overrightarrow {BC} = \left( {0;1;0} \right) \Rightarrow \left[ {\overrightarrow {A'B} ;\overrightarrow {BC} } \right] = \left( {1;0;1} \right) \Rightarrow \left( {A'BC} \right)\] có 1 VTPT là\[\overrightarrow {{n_1}} = \left( {1;0;1} \right)\]
\[\overrightarrow {AB} = \left( {1;0;0} \right),\,\,\overrightarrow {AC'} = \left( {1;1;1} \right) \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC'} } \right] = \left( {0; - 1;1} \right) \Rightarrow \left( {ABC'} \right)\]có 1 VTPT là\[\overrightarrow {{n_2}} = \left( {0; - 1;1} \right)\]
Gọi αα là góc giữa hai mặt phẳng (A′BC) và (ABC′) ta có:
\[\cos \alpha = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {1.0 + 0.\left( { - 1} \right) + 1.1} \right|}}{{\sqrt {{1^2} + {0^2} + {1^2}} .\sqrt {{0^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{1}{2}\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng qua điểm M(2,−3,4) và nhận \[\overrightarrow n = \left( { - 2,4,1} \right)\;\]làm vectơ pháp tuyến.
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x′Ox,y′Oy,z′Oz lần lượt tại các điểm A,B,C sao cho \[OA = OB = OC \ne 0\]?
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4,−1,2), B(2,−3,−2). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB.
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho A(1,−3,2),B(1,0,1),C(2,3,0). Viết phương trình mặt phẳng (ABC) .
Câu 5:
Trong không gian Oxyz, cho ba điểm A(1,0,0),B(0,1,0) và C(0,0,1) . Phương trình mặt phẳng (P) đi qua ba điểm A,B,C là:
Câu 6:
Trong không gian với hệ trục Oxyz, mặt phẳng đi qua điểm A(1,3,−2) và song song với mặt phẳng \[(P):2x - y + 3z + 4 = 0\] là:
về câu hỏi!