Thi Online Bài tập chuyên đề Toán 7 Dạng 1: Tiên đề Ơ-clit. Tính chất của hai đường thằng song song có đáp án
Bài tập chuyên đề Toán 7 Dạng 1: Tiên đề Ơ-clit. Tính chất của hai đường thằng song song có đáp án
-
306 lượt thi
-
21 câu hỏi
-
60 phút
Câu 1:
Cho tam giác ABC, ; . Trên nửa mặt phẳng bờ BC có chứa A vẽ các tia Cx và Cy sao cho ACx=75; BCy=120. Chứng tỏ rằng các tia Cx và Cy trùng nhau.

Ta có ACx = =75 => Cx // AB(vì có cặp góc so le trong bằng nhau). (1)
Ta có BCy + =120+60= 180
=> Cy // AB (vì có cặp góc trong cùng phía bù nhau). (2)
Từ (1) và (2), theo tiên đề Ơ-clít, ta có hai đường thẳng Cx và Cy trùng nhau. Mặt khác, hai tia Cx và Cy cùng nằm trên một nửa mặt phẳng bờ BC có chứa A nên hai tia này trùng nhau.
Câu 2:
Hình 4.5 có a // b và . Tính số đo các góc A2 và B2.

Ta có a // b nên (cặp góc trong cùng phía).
Mặt khác, (đề bài) nên và .
Suy ra (cặp góc so le trong); (cặp góc so le trong).
Câu 3:
Tính các số đo x, y trong hình 4.6, biết và x=.
Tính các số đo x, y trong hình 4.6, biết và x=.

Ta có (kề bù) mà (đề bài) nên .
Suy ra AB .
Tương tự AB .
Do đó a // b (cùng vuông góc với AB).
Ta có x + y = 180 (cặp góc trong cùng phía) mà x= nên x= .
Câu 4:
Hình 4.7 có . Chứng tỏ rằng Ax // By.

Ở trong góc AOB, vẽ tia Ot //Ax. Khi đó (cặp góc so le trong).
Suy ra .
Vậy .
Do đó By // Ot (vì có cặp so le trong bằng nhau).
Từ đó suy ra Ax // By (vì cùng song song với Ot).
Câu 5:
Cho tam giác ABC. Vẽ điểm M sao cho góc BAM bằng và so le trong với góc B. Vẽ điểm N sao góc CAN bằng và so le trong với góc C. Chứng tỏ rằng ba điểm M, A, N thẳng hàng.
Cho tam giác ABC. Vẽ điểm M sao cho góc BAM bằng và so le trong với góc B. Vẽ điểm N sao góc CAN bằng và so le trong với góc C. Chứng tỏ rằng ba điểm M, A, N thẳng hàng.

Ta có suy ra AM // BC (vì có cặp góc so le trong bằng nhau).
suy ra AN // BC (vì có cặp góc so le trong bằng nhau).
Theo tiên đề Ơ-clít qua điểm A chỉ có một đường thẳng song song với BC, do đó ba điểm M, A, N thẳng hàng.
Các bài thi hot trong chương
Đánh giá trung bình
0%
0%
0%
0%
0%