Câu hỏi:
23/05/2022 551Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\]. Điều kiện để \[f\left( x \right) \le 0,\forall x \in R\;\] là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:\[f\left( x \right) \le 0\,,\forall x \in \mathbb{R}\] khi \[a < 0\] và \[{\rm{\Delta }} \le 0\].
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình \[{\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2}\]?
Câu 2:
Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\] có \[\Delta = {b^2} - 4ac < 0\]. Khi đó mệnh đề nào đúng?
Câu 3:
Cho các tam thức \[f\left( x \right) = 2{x^2} - 3x + 4;\,g\left( x \right) = - {x^2} + 3x - 4;\,h\left( x \right) = 4 - 3{x^2}\]. Số tam thức đổi dấu trên RR là:
Câu 5:
Bảng xét dấu nào sau đây là của tam thức \[f\left( x \right) = \;{x^2} + 12x + 36\]?
Câu 6:
Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right).\] Điều kiện để f(x) >0\[,\forall x \in R\] là
về câu hỏi!