Câu hỏi:

23/05/2022 534

Cho các tam thức \[f\left( x \right) = 2{x^2} - 3x + 4;\,g\left( x \right) = - {x^2} + 3x - 4;\,h\left( x \right) = 4 - 3{x^2}\]. Số tam thức đổi dấu trên RR là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì f(x) = 0 vô nghiệm do \[{\rm{\Delta }} = 9 - 4.2.4 = - 23 < 0\]

g(x) = 0 vô nghiệm do \[{\rm{\Delta }} = 9 - 4.\left( { - 1} \right).\left( { - 4} \right) = - 7 < 0\]

h(x) = 0 có hai nghiệm phân biệt do:

\[4 - 3{x^2} = 0 \Leftrightarrow 3{x^2} = 4 \Leftrightarrow {x^2} = \frac{4}{3} \Leftrightarrow x = \pm \frac{2}{{\sqrt 3 }}\]

Nên chỉ có h(x) đổi dấu trên \[\mathbb{R}\].

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có

\[{\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2} \Leftrightarrow {\left( {{x^2} + x + m} \right)^2} - {\left( {{x^2} - 3x - m} \right)^2} \ge 0\]

\[ \Leftrightarrow 4x\left( {2x + m} \right)\left( {x - 1} \right) \ge 0\]

Với m < 0 ta có bảng xét dấu

TH1: \[ - \frac{m}{2} \ge 1\]

 Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình  (ảnh 1)

Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với x >0 thì\[ - \frac{m}{2} = 1 \Leftrightarrow m = - 2\]

TH 2: \[0 < - \frac{m}{2} < 1\]

 Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình  (ảnh 2)

Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với x >0 thì \[ - \frac{m}{2} = 1 \Leftrightarrow m = - 2\]

Vậy có 1 giá trị

Đáp án cần chọn là: B

Câu 2

Lời giải

Ta có:\[f\left( x \right) \le 0\,,\forall x \in \mathbb{R}\] khi \[a < 0\] và \[{\rm{\Delta }} \le 0\].

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP