Câu hỏi:

23/05/2022 418

Tìm m để \[(m + 1){x^2} + mx + m < 0,\forall x \in \mathbb{R}\]?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với m = −1 thì bpt trở thành –x – 1 < 0⇔ x >−1 nên bpt không đúng với mọi x (loại)Do đó m = -1 không thỏa mãn.

Với \[m \ne - 1,(m + 1){x^2} + mx + m < 0,\forall x \in \mathbb{R} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta < 0}\end{array}} \right.\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m + 1 < 0}\\{{m^2} - 4m(m + 1) < 0}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m + 1 < 0}\\{ - 3{m^2} - 4m < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{\left[ {\begin{array}{*{20}{c}}{m < - \frac{4}{3}}\\{m >0}\end{array}} \right.}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m < - \frac{4}{3}}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m >0}\end{array}\left( {VN} \right)} \right.}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m < - \frac{4}{3}}\end{array} \Leftrightarrow m < - \frac{4}{3}} \right.\)

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình \[{\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2}\]?

Xem đáp án » 23/05/2022 1,184

Câu 2:

Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\]. Điều kiện để \[f\left( x \right) \le 0,\forall x \in R\;\] là

Xem đáp án » 23/05/2022 593

Câu 3:

Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\] có \[\Delta = {b^2} - 4ac < 0\]. Khi đó mệnh đề nào đúng?

Xem đáp án » 23/05/2022 466

Câu 4:

Cho các tam thức \[f\left( x \right) = 2{x^2} - 3x + 4;\,g\left( x \right) = - {x^2} + 3x - 4;\,h\left( x \right) = 4 - 3{x^2}\]. Số tam thức đổi dấu trên RR là:

Xem đáp án » 23/05/2022 433

Câu 5:

Bảng xét dấu nào sau đây là của tam thức \[f\left( x \right) = \;{x^2} + 12x + 36\]?

Xem đáp án » 23/05/2022 402

Câu 6:

Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right).\] Điều kiện để f(x) >0\[,\forall x \in R\] là

Xem đáp án » 23/05/2022 382

Bình luận


Bình luận