Câu hỏi:
23/05/2022 357Cho hai đường thẳng \[{d_1}:3x + 4y + 12 = 0\] và \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + at}\\{y = 1 - 2t}\end{array}} \right.\]. Tìm các giá trị của tham số a để d1 và d2 hợp với nhau một góc bằng 450.
Quảng cáo
Trả lời:
Ta có
\(\left\{ {\begin{array}{*{20}{c}}{{d_1}:3x + 4y + 12 = 0 \to \overrightarrow {{n_1}} = (3;4)}\\{{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + at}\\{y = 1 - 2t}\end{array} \to \overrightarrow {{n_2}} = (2;a)} \right.}\end{array}} \right.\)
\[\varphi = \left( {{d_1};{d_2}} \right) = {45^0} \Rightarrow \frac{1}{{\sqrt 2 }} = \cos {45^0} = \cos \varphi = \frac{{\left| {6 + 4a} \right|}}{{\sqrt {25} .\sqrt {{a^2} + 4} }}\]
\[\begin{array}{l} \Leftrightarrow 25({a^2} + 4) = 8(4{a^2} + 12a + 9) \Leftrightarrow 7{a^2} + 96a - 28 = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a = - 14}\\{a = \frac{2}{7}}\end{array}} \right.\end{array}\]
Đáp án cần chọn là: A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[I\left( {6;2} \right);M\left( {1;5} \right)\]
\[{\rm{\Delta }}:x + y - 5 = 0,E \in {\rm{\Delta }} \Rightarrow E\left( {m;5 - m} \right);\]
Gọi N là trung điểm của AB
I trung điểm NE \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_N} = 2{x_I} - {x_E} = 12 - m}\\{{y_N} = 2{y_I} - {y_E} = 4 - 5 + m = m - 1}\end{array}} \right.\)
\[ \Rightarrow N\left( {12 - m;m - 1} \right)\]
\[\overrightarrow {MN} = \left( {11 - m;m - 6} \right);\]
\[\overrightarrow {IE} = \left( {m - 6;5 - m - 2} \right) = \left( {m - 6;3 - m} \right)\]
\[\overrightarrow {MN} .\overrightarrow {IE} = 0 \Leftrightarrow \left( {11 - m} \right)\left( {m - 6} \right) + \left( {m - 6} \right)\left( {3 - m} \right) = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 = 0}\\{14 - 2m = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 6}\\{m = 7}\end{array}} \right.\)
\[m = 6 \Rightarrow \overrightarrow {MN} = \left( {5;0} \right)\]nên phương trình AB là y = 5
\[m = 7 \Rightarrow \overrightarrow {MN} = \left( {4;1} \right)\] nên phương trình AB là \[x - 4y + 19 = 0\]Đáp án cần chọn là: A
Lời giải
+ Cạnh AB đi qua hai điểm A,B nên phương trình cạnh AB:\[x - 2y - 2 = 0\]+ Cạnh AC đi qua hai điểm A,C nên phương trình cạnh \[AC:2x + y - 4 = 0\]+ Phương trình hai đường phân giác của góc A:
\(\frac{{x - 2y - 2}}{{\sqrt 5 }} = \pm \frac{{2x + y - 4}}{{\sqrt 5 }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + 3y - 2 = 0(d)}\\{3x - y - 6 = 0(d\prime )}\end{array}} \right.\)
+ Xét đường phân giác \[\left( d \right):x + 3y - 2 = 0\]
Thế tọa độ điểm B vào vế trái của\[d:{t_1} = 4 + 3.1 - 2 = 5 >0\]
Thế tạo độ điểm C vào vế trái của d: \[{t_2} = 1 + 3.2 - 2 = 5 >0\]
Vì\[{t_1}.{t_2} >0\] nên B và C nằm cùng phía đối với d⇒d là đường phân giác ngoài
Vậy đường phân giác trong của góc A là: \[d':3x - y - 6 = 0\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.