Câu hỏi:
17/05/2022 175Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3;−4), B(1;5) và C(3;1). Tính diện tích tam giác ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Cách 1:
+) Viết phương trình BCBC:
Ta có:\[\overrightarrow {BC} = \left( {2; - 4} \right)\] nên\[\overrightarrow {{u_{BC}}} = \frac{1}{2}\overrightarrow {BC} = \left( {1; - 2} \right)\] là VTCP của BC, do đó\[\overrightarrow {{n_{BC}}} = \left( {2;1} \right)\]
Đường thẳng BC đi qua B(1;5) và nhận\[\overrightarrow {{n_{BC}}} = \left( {2;1} \right)\] làm VTPT nên:
\[BC:2\left( {x - 1} \right) + 1\left( {y - 5} \right) = 0\] hay\[BC:2x + y - 7 = 0\]
Suy ra
\(\left\{ {\begin{array}{*{20}{c}}{A(3; - 4)}\\{B(1;5),C(3;1)}\end{array}} \right. \to \left\{ {\begin{array}{*{20}{c}}{A(3; - 4)}\\{BC = 2\sqrt 5 }\\{BC:2x + y - 7 = 0}\end{array}} \right.\)
\( \to \left\{ {\begin{array}{*{20}{c}}{BC = 2\sqrt 5 }\\{hA = d(A;BC) = \sqrt 5 }\end{array}} \right.\)
\[ \to {S_{ABC}} = \frac{1}{2}.2\sqrt 5 .\sqrt 5 = 5.\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của 2 đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng \[\Delta :x + y - 5 = 0.\]. Viết phương trình đường thẳng AB.
Câu 2:
Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC
Câu 3:
Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có phương trình đường phân giác trong góc A là d1:x+y+2=0, phương trình đường cao vẽ từ B là d2:2x−y+1=0, cạnh AB đi qua M(1;−1). Tìm phương trình cạnh AC.
Câu 4:
Lập phương trình đường phân giác trong của góc A của ΔABC biết A(2;0);B(4;1);C(1;2)
Câu 5:
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?
Câu 6:
Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]. Viết PTĐT (d) đi qua điểm M(1;2) và tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)
Câu 7:
Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là:
về câu hỏi!