Câu hỏi:
17/05/2022 1,040Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD biết M(2;1);N(4;−2);P(2;0);Q(1;2) lần lượt thuộc cạnh AB,BC,CD,AD. Hãy lập phương trình cạnh AB của hình vuông.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Giả sử đường thẳng AB qua M và có VTPT là \[\vec n = \left( {a;b} \right)\,\,\,\,\left( {{a^2} + {b^2} \ne 0} \right)\]
=>VTPT của BC là:\[{\vec n_1} = \left( { - b;a} \right)\]
Phương trình AB có dạng: \[a\left( {x - 2} \right) + b\left( {y - 1} \right) = 0 \Leftrightarrow ax + by - 2a - b = 0\]BC có dạng:\[ - b\left( {x - 4} \right) + a\left( {y + 2} \right) = 0\; \Leftrightarrow - bx + ay + 4b + 2a = 0\]
Do ABCD là hình vuông nên\[d\left( {P,AB} \right) = d\left( {Q,BC} \right)\]
\( \Leftrightarrow \frac{{\left| { - b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{|3b + 4a|}}{{\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{b = - 2a}\\{b = - a}\end{array}} \right.\)
TH1: \[b = - 2a\]
Chọn\[a = 1 \Rightarrow b = - 2\] ta được\[AB:x - 2y - 2.1 - \left( { - 2} \right) = 0\] hay\[x - 2y = 0\]\[BC: - \left( { - 2} \right)x + y + 4.\left( { - 2} \right) + 2.1 = 0\] hay\[2x + y - 6 = 0\]
CD đi qua P(2;0) và song song AB nên nhận\[\overrightarrow {{n_{AB}}} = \left( {1; - 2} \right)\]l àm VTPT
Do đó CD: 1(x-2) – 2(y-0) = 0 hay x-2y-2=0
AD đi qua Q(1;2) và song song BC nên nhận\[\overrightarrow {{n_{BC}}} = \left( {2;1} \right)\] làm VTPT
Do đó AD: 2(x-1) + 1(y-2) = 0 hay 2x+y-4=0
TH2:\[b = - a\]
Chọn\[a = 1 \Rightarrow b = - 1\] ta được\[AB:x - y - 2.1 - \left( { - 1} \right) = 0\] hay\[x - y - 1 = 0\]
\[BC: - \left( { - 1} \right)x + y + 4.\left( { - 1} \right) + 2.1 = 0\] hay\[x + y - 2 = 0\]
CD đi qua P(2;0) và song song AB nên nhận\[\overrightarrow {{n_{AB}}} = \left( {1; - 1} \right)\] làm VTPT
Do đó CD: 1(x-2) – 1(y-0) = 0 hay x-y-2=0
AD đi qua Q(1;2) và song song BC nên nhận\[\overrightarrow {{n_{BC}}} = \left( {1;1} \right)\] làm VTPT
Do đó AD: 1(x-1) + 1(y-2) = 0 hay x+y-3=0.
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của 2 đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng \[\Delta :x + y - 5 = 0.\]. Viết phương trình đường thẳng AB.
Câu 2:
Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC
Câu 3:
Lập phương trình đường phân giác trong của góc A của ΔABC biết A(2;0);B(4;1);C(1;2)
Câu 4:
Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có phương trình đường phân giác trong góc A là d1:x+y+2=0, phương trình đường cao vẽ từ B là d2:2x−y+1=0, cạnh AB đi qua M(1;−1). Tìm phương trình cạnh AC.
Câu 5:
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?
Câu 6:
Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]. Viết PTĐT (d) đi qua điểm M(1;2) và tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)
Câu 7:
Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!