Câu hỏi:

17/05/2022 1,895

Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD  biết  M(2;1);N(4;−2);P(2;0);Q(1;2) lần lượt thuộc cạnh AB,BC,CD,AD.  Hãy lập phương trình  cạnh AB của hình vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử đường thẳng AB  qua M và có VTPT là \[\vec n = \left( {a;b} \right)\,\,\,\,\left( {{a^2} + {b^2} \ne 0} \right)\]

 =>VTPT của BC là:\[{\vec n_1} = \left( { - b;a} \right)\]

 Phương trình AB có dạng: \[a\left( {x - 2} \right) + b\left( {y - 1} \right) = 0 \Leftrightarrow ax + by - 2a - b = 0\]BC có dạng:\[ - b\left( {x - 4} \right) + a\left( {y + 2} \right) = 0\; \Leftrightarrow - bx + ay + 4b + 2a = 0\]

Do ABCD là hình vuông nên\[d\left( {P,AB} \right) = d\left( {Q,BC} \right)\]

\( \Leftrightarrow \frac{{\left| { - b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{|3b + 4a|}}{{\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{b = - 2a}\\{b = - a}\end{array}} \right.\)

TH1: \[b = - 2a\]

Chọn\[a = 1 \Rightarrow b = - 2\]  ta được\[AB:x - 2y - 2.1 - \left( { - 2} \right) = 0\] hay\[x - 2y = 0\]\[BC: - \left( { - 2} \right)x + y + 4.\left( { - 2} \right) + 2.1 = 0\] hay\[2x + y - 6 = 0\]

CD đi qua P(2;0) và song song AB nên nhận\[\overrightarrow {{n_{AB}}} = \left( {1; - 2} \right)\]l àm VTPT

Do đó CD: 1(x-2) – 2(y-0) = 0 hay x-2y-2=0

AD đi qua Q(1;2) và song song BC nên nhận\[\overrightarrow {{n_{BC}}} = \left( {2;1} \right)\] làm VTPT

Do đó AD: 2(x-1) + 1(y-2) = 0 hay 2x+y-4=0

TH2:\[b = - a\]

Chọn\[a = 1 \Rightarrow b = - 1\] ta được\[AB:x - y - 2.1 - \left( { - 1} \right) = 0\] hay\[x - y - 1 = 0\]

\[BC: - \left( { - 1} \right)x + y + 4.\left( { - 1} \right) + 2.1 = 0\] hay\[x + y - 2 = 0\]

CD đi qua P(2;0) và song song AB nên nhận\[\overrightarrow {{n_{AB}}} = \left( {1; - 1} \right)\]  làm VTPT

Do đó CD: 1(x-2) – 1(y-0) = 0 hay x-y-2=0

AD đi qua Q(1;2) và song song BC nên nhận\[\overrightarrow {{n_{BC}}} = \left( {1;1} \right)\] làm VTPT

Do đó AD: 1(x-1) + 1(y-2) = 0 hay x+y-3=0.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong mặt phẳng với hệ tọa độ Oxy,  cho hình chữ nhật ABCD  có điểm I(6;2) là giao điểm của 2  đường chéo AC  và BD.  Điểm M(1;5) thuộc đường thẳng AB  và trung điểm E  của cạnh CD  thuộc đườ (ảnh 1)

\[I\left( {6;2} \right);M\left( {1;5} \right)\]

\[{\rm{\Delta }}:x + y - 5 = 0,E \in {\rm{\Delta }} \Rightarrow E\left( {m;5 - m} \right);\]

Gọi N là trung điểm của AB

I  trung điểm  NE \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_N} = 2{x_I} - {x_E} = 12 - m}\\{{y_N} = 2{y_I} - {y_E} = 4 - 5 + m = m - 1}\end{array}} \right.\)

\[ \Rightarrow N\left( {12 - m;m - 1} \right)\]

\[\overrightarrow {MN} = \left( {11 - m;m - 6} \right);\]

\[\overrightarrow {IE} = \left( {m - 6;5 - m - 2} \right) = \left( {m - 6;3 - m} \right)\]

\[\overrightarrow {MN} .\overrightarrow {IE} = 0 \Leftrightarrow \left( {11 - m} \right)\left( {m - 6} \right) + \left( {m - 6} \right)\left( {3 - m} \right) = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 = 0}\\{14 - 2m = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 6}\\{m = 7}\end{array}} \right.\)

\[m = 6 \Rightarrow \overrightarrow {MN} = \left( {5;0} \right)\]nên phương trình AB là y = 5

\[m = 7 \Rightarrow \overrightarrow {MN} = \left( {4;1} \right)\] nên phương trình AB là \[x - 4y + 19 = 0\]Đáp án cần chọn là: A

Lời giải

+ Cạnh AB đi qua hai điểm A,B nên phương trình cạnh AB:\[x - 2y - 2 = 0\]+ Cạnh AC đi qua hai điểm A,C nên phương trình cạnh \[AC:2x + y - 4 = 0\]+ Phương trình hai đường phân giác của góc A:

\(\frac{{x - 2y - 2}}{{\sqrt 5 }} = \pm \frac{{2x + y - 4}}{{\sqrt 5 }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + 3y - 2 = 0(d)}\\{3x - y - 6 = 0(d\prime )}\end{array}} \right.\)

+ Xét đường phân giác \[\left( d \right):x + 3y - 2 = 0\]

Thế tọa độ điểm B  vào vế trái của\[d:{t_1} = 4 + 3.1 - 2 = 5 >0\]

Thế tạo độ điểm C  vào vế trái của d: \[{t_2} = 1 + 3.2 - 2 = 5 >0\]

Vì\[{t_1}.{t_2} >0\] nên B  và C  nằm cùng phía đối với d⇒d là đường phân giác ngoài

Vậy đường phân giác trong của góc A  là: \[d':3x - y - 6 = 0\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP