Câu hỏi:

23/05/2022 525

Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng \[{d_1}:x - 7y + 17 = 0,\] \[{d_2}:x + y - 5 = 0\]. Viết phương trình đường thẳng d qua điểm M(0;1) tạo với \[{d_1},{d_2}\;\] một tam giác cân tại giao điểm của \[{d_1},{d_2}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng  (ảnh 1)

Phương trình đường phân giác góc tạo bởi \[{d_1},{d_2}\] là:

\(\frac{{|x - 7y + 17|}}{{\sqrt {{1^2} + {{( - 7)}^2}} }} = \frac{{|x + y - 5|}}{{\sqrt {{1^2} + {1^2}} }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x + 6y - 21 = 0({\Delta _1})}\\{3x - y - 4 = 0({\Delta _2})}\end{array}} \right.\)

Đường thẳng cần tìm đi qua M(0;1) và vuông góc  với \[{{\rm{\Delta }}_1},{{\rm{\Delta }}_2}\]

+ Gọi \[{d_3}\] là đường thẳng vuông góc với \[{{\rm{\Delta }}_1}\] thì \[{d_3}\] có dạng: \[3x - y + c = 0\]

\[{d_3}\] đi qua điểm M(0;1) nên\[3.0 - 1 + c = 0 \Leftrightarrow c = 1\]  hay\[3x - y + 1 = 0\]

+ Gọi \[{d_4}\] là đường thẳng vuông góc với \[{{\rm{\Delta }}_2}\] thì \[{d_4}\] có dạng:\[x + 3y + c = 0\]

\[{d_4}\] đi qua điểm M(0;1) nên \[0 + 3.1 + c = 0 \Leftrightarrow c = - 3\] hay\[x + 3y - 3 = 0\]

KL: \[x + 3y - 3 = 0\] và\[3x - y + 1 = 0\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong mặt phẳng với hệ tọa độ Oxy,  cho hình chữ nhật ABCD  có điểm I(6;2) là giao điểm của 2  đường chéo AC  và BD.  Điểm M(1;5) thuộc đường thẳng AB  và trung điểm E  của cạnh CD  thuộc đườ (ảnh 1)

\[I\left( {6;2} \right);M\left( {1;5} \right)\]

\[{\rm{\Delta }}:x + y - 5 = 0,E \in {\rm{\Delta }} \Rightarrow E\left( {m;5 - m} \right);\]

Gọi N là trung điểm của AB

I  trung điểm  NE \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_N} = 2{x_I} - {x_E} = 12 - m}\\{{y_N} = 2{y_I} - {y_E} = 4 - 5 + m = m - 1}\end{array}} \right.\)

\[ \Rightarrow N\left( {12 - m;m - 1} \right)\]

\[\overrightarrow {MN} = \left( {11 - m;m - 6} \right);\]

\[\overrightarrow {IE} = \left( {m - 6;5 - m - 2} \right) = \left( {m - 6;3 - m} \right)\]

\[\overrightarrow {MN} .\overrightarrow {IE} = 0 \Leftrightarrow \left( {11 - m} \right)\left( {m - 6} \right) + \left( {m - 6} \right)\left( {3 - m} \right) = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 = 0}\\{14 - 2m = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 6}\\{m = 7}\end{array}} \right.\)

\[m = 6 \Rightarrow \overrightarrow {MN} = \left( {5;0} \right)\]nên phương trình AB là y = 5

\[m = 7 \Rightarrow \overrightarrow {MN} = \left( {4;1} \right)\] nên phương trình AB là \[x - 4y + 19 = 0\]Đáp án cần chọn là: A

Lời giải

+ Cạnh AB đi qua hai điểm A,B nên phương trình cạnh AB:\[x - 2y - 2 = 0\]+ Cạnh AC đi qua hai điểm A,C nên phương trình cạnh \[AC:2x + y - 4 = 0\]+ Phương trình hai đường phân giác của góc A:

\(\frac{{x - 2y - 2}}{{\sqrt 5 }} = \pm \frac{{2x + y - 4}}{{\sqrt 5 }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + 3y - 2 = 0(d)}\\{3x - y - 6 = 0(d\prime )}\end{array}} \right.\)

+ Xét đường phân giác \[\left( d \right):x + 3y - 2 = 0\]

Thế tọa độ điểm B  vào vế trái của\[d:{t_1} = 4 + 3.1 - 2 = 5 >0\]

Thế tạo độ điểm C  vào vế trái của d: \[{t_2} = 1 + 3.2 - 2 = 5 >0\]

Vì\[{t_1}.{t_2} >0\] nên B  và C  nằm cùng phía đối với d⇒d là đường phân giác ngoài

Vậy đường phân giác trong của góc A  là: \[d':3x - y - 6 = 0\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP