Câu hỏi:

23/05/2022 258

Phương trình \[\left( {{m^2} - 3m + 2} \right)x + {m^2} + 4m + 5 = 0\] có tập nghiệm là \(\mathbb{R}\) khi:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình có vô số nghiệm khi \(\left\{ {\begin{array}{*{20}{c}}{{m^2} - 3m + 2 = 0}\\{{m^2} + 4m + 5 = 0}\end{array}} \right. \Leftrightarrow m \in \emptyset \)(do phương trình \[{m^2} + 4m + 5 = 0\] vô nghiệm với mọi m

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho phương trình \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\]. Phương trình có hai nghiệm âm phân biệt khi và chỉ khi :

Lời giải

Phương trình có hai nghiệm âm phân biệt khi và chỉ khi \(\left\{ {\begin{array}{*{20}{c}}{\Delta >0}\\{S < 0}\\{P >0}\end{array}} \right.\)

Đáp án cần chọn là: C

Câu 2

Tìm tất cả các gía trị thực của tham số mm sao cho phương trình \[\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\] có hai nghiệm dương phân biệt.

Lời giải

Phương trình \[\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\]có hai nghiệm dương phân biệt khi và chỉ khi

\(\left\{ {\begin{array}{*{20}{c}}{a \ne 0}\\{\Delta >0}\\{P >0}\\{S >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m - 1 \ne 0\,\,\,\,\,\,\,\,\,\,(1)}\\{4{{(m + 1)}^2} - 4(m - 1)(m + 4) >0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)}\\{\frac{{m + 4}}{{m - 1}} >0\,\,\,\,\,\,\,\,(3)}\\{\frac{{m + 1}}{{m - 1}} >0\,\,\,\,\,\,\,\,(4)}\end{array}} \right.\)

Giải (1):\[m - 1 \ne 0 \Leftrightarrow m \ne 1\]

Giải (2):

\[4{(m + 1)^2} - 4(m - 1)(m + 4) >0\]

\[ \Leftrightarrow (4{m^2} + 8m + 4) - (4m - 4)(m + 4) >0\]

\[ \Leftrightarrow 4{m^2} + 8m + 4 - 4{m^2} - 16m + 4m + 16 >0\]

\[ \Leftrightarrow - 4m + 20 >0\]

\[ \Leftrightarrow m < 5\]

Giải (3):

\(\frac{{m + 4}}{{m - 1}} >0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m + 4 >0}\\{m - 1 >0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m + 4 >0}\\{m - 1 < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m >- 4}\\{m >1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 4}\\{m < 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m >1}\\{m < - 4}\end{array}} \right.\)

Giải (4):

\(\frac{{m + 1}}{{m - 1}} >0\, \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m + 1 >0}\\{m - 1 >0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m + 1 < 0}\\{m - 1 < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m >- 1}\\{m >1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m < 1}\end{array}} \right.}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m >1}\\{m < - 1}\end{array}} \right.} \right.\)

Kết hợp cả 4 điều kiện ta được m < −4 hoặc 1 < m < 5.

Đáp án cần chọn là: A

</></></></></></></></>

Câu 3

Cho phương trình \[\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0\] .Phương trình có ba nghiệm phân biệt khi:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phương trình \[a{x^2} + bx + c = 0\;\] có nghiệm duy nhất khi và chỉ khi:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho phương trình \[a{x^2} + bx + c = 0\] Đặt \(S = - \frac{b}{a},P = \frac{c}{a}\), hãy chọn khẳng định sai trong các khẳng định sau:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phương trình \[{x^2} - \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3 = 0\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay