Câu hỏi:
23/05/2022 274Giá trị lớn nhất, giá trị nhỏ nhất của hàm số \[f\left( x \right) = \frac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}}\] lần lượt là M và m thì:
Quảng cáo
Trả lời:
Đặt \[f\left( x \right) = \frac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = A\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow {x^2} + 4x + 5 = A\left( {{x^2} + 3x + 3} \right)}\\{ \Leftrightarrow {x^2} + 4x + 5 - A\left( {{x^2} + 3x + 3} \right) = 0}\\{ \Leftrightarrow {x^2} + 4x + 5 - A{x^2} - 3Ax - 3A = 0}\\{ \Leftrightarrow \left( {1 - A} \right){x^2} + \left( {4 - 3A} \right)x + 5 - 3A = 0\,\,\,\,\left( 1 \right)}\end{array}\]
Phương trình (1) có nghiệm\[ \Leftrightarrow {\rm{\Delta }} \ge 0\]
\[\begin{array}{*{20}{l}}{{\rm{\Delta }} \ge 0 \Leftrightarrow {{\left( {4 - 3A} \right)}^2} - 4.\left( {1 - A} \right)\left( {5 - 3A} \right) \ge 0}\\{\, \Leftrightarrow \left( {16 - 24A + 9{A^2}} \right) - \left( {4 - 4A} \right)\left( {5 - 3A} \right) \ge 0}\\{\, \Leftrightarrow \left( {16 - 24A + 9{A^2}} \right) - \left( {20 - 12A - 20A + 12{A^2}} \right) \ge 0}\\{\, \Leftrightarrow 16 - 24A + 9{A^2} - 20 + 12A + 20A - 12{A^2} \ge 0}\\{\, \Leftrightarrow - 3{A^2} + 8A - 4 \ge 0}\\{\, \Leftrightarrow 3{A^2} - 8A + 4 \le 0}\\{\, \Leftrightarrow \left( {A - 2} \right)\left( {3A - 2} \right) \le 0}\\{ \Leftrightarrow \frac{2}{3} \le A \le 2}\end{array}\]
+) \[A \ge \frac{2}{3} \Rightarrow Min\,A = \frac{2}{3}\]
\[A = \frac{2}{3} \Leftrightarrow \frac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = \frac{2}{3} \Leftrightarrow 3{x^2} + 12x + 15 = 2{x^2} + 6x + 6\]
\[ \Leftrightarrow {x^2} + 6x + 9 = 0 \Leftrightarrow x = - 3\]
+) \[A \le 2 \Rightarrow Max\,A = 2\]
\[A = 2 \Leftrightarrow \frac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = 2 \Leftrightarrow {x^2} + 4x + 5 = 2{x^2} + 6x + 6 \Leftrightarrow {x^2} + 2x + 1 = 0 \Leftrightarrow x = - 1\]
Vậy\[Min\,f\left( x \right) = Min\,A = \frac{2}{3} \Leftrightarrow x = - 1;Max\,f\left( x \right) = Max\,A = 2 \Leftrightarrow x = - 1\]
Khi đó, ta có:\(\left\{ {\begin{array}{*{20}{c}}{M = 2}\\{m = \frac{2}{3}}\end{array}} \right.\)
\[M + m = \frac{8}{3}\]⇒ Đáp án A sai.
\[Mm = \frac{4}{3} \Rightarrow \]Đáp án B sai.
\[\frac{M}{m} = 3 \Rightarrow \]Đáp án C sai.
\[M - m = \frac{4}{3} \Rightarrow \]Đáp ánD đúng.
Đáp án cần chọn là: D
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình có hai nghiệm âm phân biệt khi và chỉ khi \(\left\{ {\begin{array}{*{20}{c}}{\Delta >0}\\{S < 0}\\{P >0}\end{array}} \right.\)
Đáp án cần chọn là: C
Lời giải
Phương trình \[\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\]có hai nghiệm dương phân biệt khi và chỉ khi
\(\left\{ {\begin{array}{*{20}{c}}{a \ne 0}\\{\Delta >0}\\{P >0}\\{S >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m - 1 \ne 0\,\,\,\,\,\,\,\,\,\,(1)}\\{4{{(m + 1)}^2} - 4(m - 1)(m + 4) >0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)}\\{\frac{{m + 4}}{{m - 1}} >0\,\,\,\,\,\,\,\,(3)}\\{\frac{{m + 1}}{{m - 1}} >0\,\,\,\,\,\,\,\,(4)}\end{array}} \right.\)
Giải (1):\[m - 1 \ne 0 \Leftrightarrow m \ne 1\]
Giải (2):
\[4{(m + 1)^2} - 4(m - 1)(m + 4) >0\]
\[ \Leftrightarrow (4{m^2} + 8m + 4) - (4m - 4)(m + 4) >0\]
\[ \Leftrightarrow 4{m^2} + 8m + 4 - 4{m^2} - 16m + 4m + 16 >0\]
\[ \Leftrightarrow - 4m + 20 >0\]
\[ \Leftrightarrow m < 5\]
Giải (3):
\(\frac{{m + 4}}{{m - 1}} >0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m + 4 >0}\\{m - 1 >0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m + 4 >0}\\{m - 1 < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m >- 4}\\{m >1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 4}\\{m < 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m >1}\\{m < - 4}\end{array}} \right.\)
Giải (4):
\(\frac{{m + 1}}{{m - 1}} >0\, \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m + 1 >0}\\{m - 1 >0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m + 1 < 0}\\{m - 1 < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m >- 1}\\{m >1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m < 1}\end{array}} \right.}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m >1}\\{m < - 1}\end{array}} \right.} \right.\)
Kết hợp cả 4 điều kiện ta được m < −4 hoặc 1 < m < 5.
Đáp án cần chọn là: A
</></></></></></></></>
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.