Câu hỏi:

23/05/2022 250

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^3} - 3x = {y^3} - 3y}\\{{x^6} + {y^6} = 27}\end{array}} \right.\)có bao nhiêu nghiệm ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có :

\[{x^3} - 3x = {y^3} - 3y \Leftrightarrow \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) - 3\left( {x - y} \right) = 0\]

\[ \Leftrightarrow \left( {x - y} \right)\left( {{x^2} + xy + {y^2} - 3} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = y}\\{{x^2} + xy + {y^2} - 3 = 0}\end{array}} \right.\]

Khi x = y thì\[{x^6} + {x^6} = 27 \Leftrightarrow {x^6} = \frac{{27}}{2} \Leftrightarrow x = \pm \sqrt[6]{{\frac{{27}}{2}}}\]

Do đó hệ có nghiệm \[\left( { \pm \sqrt[6]{{\frac{{27}}{2}}}; \pm \sqrt[6]{{\frac{{27}}{2}}}} \right)\]

Khi\[{x^2} + xy + {y^2} - 3 = 0 \Leftrightarrow {x^2} + {y^2} = 3 - xy\] ta có \[{x^6} + {y^6} = 27\]\[ \Leftrightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^4} - {x^2}{y^2} + {y^4}} \right) = 27 \Rightarrow \left( {3 - xy} \right)\left[ {{{\left( {3 - xy} \right)}^2} - 3{x^2}{y^2}} \right] = 27\]

\[ \Leftrightarrow (3 - xy)(9 - 6xy + {x^2}{y^2} - 3{x^2}{y^2}) = 27\]

\[ \Leftrightarrow 27 - 9xy - 18xy + 6{x^2}{y^2} + 3{x^2}{y^2} - {x^3}{y^3} - 9{x^2}{y^2} + 3{x^3}{y^3} = 27\]

\[ \Leftrightarrow 2{x^3}{y^3} - 27xy = 0\]

\[ \Leftrightarrow xy(2{x^2}{y^2} - 27) = 0\]

\(\left[ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0}\\{{x^2}{y^2} = \frac{{27}}{2}}\end{array}} \right.\)

+) Nếu x = 0 thì\(\left\{ {\begin{array}{*{20}{c}}{0 = {y^3} - 3y}\\{{y^6} = 27}\end{array} \Leftrightarrow {y^2} = 3 \Leftrightarrow y = \pm \sqrt 3 } \right.\)  nên phương trình có hai nghiệm \[\left( {0; \pm \sqrt 3 } \right)\]

+) Nếu y = 0 thì \(\left\{ {\begin{array}{*{20}{c}}{{x^3} - 3x = 0}\\{{x^6} = 27}\end{array}} \right. \Leftrightarrow {x^2} = 3 \Leftrightarrow x = \pm \sqrt 3 \) nên phương trình có hai nghiệm\[\left( { \pm \sqrt 3 ;0} \right)\]

+) Nếu\({x^2}{y^2} = \frac{{27}}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{xy = \frac{{3\sqrt 6 }}{2}}\\{xy = - \frac{{3\sqrt 6 }}{2}}\end{array}} \right.\)

TH1:\[xy = \frac{{3\sqrt 6 }}{2}\] thì:

\[{x^2} + {y^2} = 3 - xy = 3 - \frac{{3\sqrt 6 }}{2} < 0\] nên ph vô nghiệm.

TH2:  \[xy = - \frac{{3\sqrt 6 }}{2}\] thì:

\[{x^2} + {y^2} = 3 - xy = 3 + \frac{{3\sqrt 6 }}{2}\]

\[ \Leftrightarrow {(x + y)^2} - 2xy = 3 + \frac{{3\sqrt 6 }}{2}\]

\[ \Leftrightarrow {(x + y)^2} + 2.\frac{{3\sqrt 6 }}{2} = 3 + \frac{{3\sqrt 6 }}{2}\]

\[ \Leftrightarrow {(x + y)^2} = 3 - \frac{{3\sqrt 6 }}{2} < 0\]

Nên phương trình vô nghiệm.

Vậy hệ đã cho có 6 nghiệm phân biệt.

Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\left\{ {\begin{array}{*{20}{c}}{\frac{3}{x} - \frac{6}{y} = 6}\\{\frac{2}{x} - \frac{1}{y} = - 2}\end{array}} \right.(x;y \ne 0)\)

Đặt \(\left\{ {\begin{array}{*{20}{c}}{\frac{1}{x} = a}\\{\frac{1}{y} = b}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{3a - 6b = 6}\\{2a - b = - 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 2}\\{b = - 2}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{{ - 1}}{2}}\\{y = \frac{{ - 1}}{2}}\end{array} \Rightarrow x + y = - 1} \right.\)

Đáp án cần chọn là: C

Câu 2

Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{{x^2} + {y^2} = {m^2}}\end{array}} \right.\) . Khẳng định nào sau đây là đúng ?

Lời giải

Ta có :\(\left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{{x^2} + {y^2} = {m^2}}\end{array}} \right. \Rightarrow {4^2} - 2P = {m^2} \Leftrightarrow P = \frac{{16 - {m^2}}}{2}\)

\[ \Rightarrow {S^2} - 4P = 16 - 2\left( {16 - {m^2}} \right) = 2{m^2} - 16 \ge 0 \Leftrightarrow \left| m \right| \ge \sqrt 8 \]

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 1}\\{y = x + m}\end{array}} \right.\) có đúng 1 nghiệm khi và chỉ khi :

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay