Câu hỏi:
23/05/2022 128Cho hệ phương trình : \(\left\{ {\begin{array}{*{20}{c}}{2{x^2} + xy - {y^2} = 0}\\{{x^2} - xy - {y^2} + 3x + 7y + 3 = 0}\end{array}} \right.\). Các cặp nghiệm (x;y) sao cho x,y đều là các số nguyên là :
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương trình \[\left( 1 \right) \Leftrightarrow \left( {x + y} \right)\left( {2x - y} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - y}\\{2x = y}\end{array}} \right.\]Trường hợp 1: x = −y thay vào (2) ta được \[\;{x^2} - 4x + 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 3}\end{array}} \right.\]
Suy ra hệ phương trình có hai nghiệm là \[\left( {1; - 1} \right),\left( {3; - 3} \right)\]
Trường hợp 2: 2x = y thay vào (2) ta được \[ - 5{x^2} + 17x + 3 = 0\]phương trình này không có nghiệm nguyên.
Vậy các cặp nghiệm (x;y) sao cho x,y đều là các số nguyên là (1;−1) và (3;−3).
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi (x0;y0) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\frac{3}{x} - \frac{6}{y} = 6}\\{\frac{2}{x} - \frac{1}{y} = - 2}\end{array}} \right.\)
Tìm \[{x_0} + {\rm{ }}{y_0}\]
Câu 2:
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{{x^2} + {y^2} = {m^2}}\end{array}} \right.\) . Khẳng định nào sau đây là đúng ?
Câu 3:
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + y = 6}\\{{y^2} + x = 6}\end{array}} \right.\)có bao nhiêu nghiệm ?
Câu 4:
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 1}\\{y = x + m}\end{array}} \right.\) có đúng 1 nghiệm khi và chỉ khi :
Câu 5:
Nếu (x;y) là nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4xy + {y^2} = 1}\\{y - 4xy = 2}\end{array}} \right.\) thì xy bằng bao nhiêu ?
Câu 6:
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x + \sqrt {y - 1} = 1}\\{2y + \sqrt {x - 1} = 1}\end{array}} \right.\) có bao nhiêu nghiệm (x;y) ?
Câu 7:
Hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{\left| {x - 1} \right| + y = 0}\\{2x - y = 5}\end{array}} \right.\) có nghiệm là ?
về câu hỏi!