Câu hỏi:

23/05/2022 224

Cho hệ phương trình : \(\left\{ {\begin{array}{*{20}{c}}{2{x^2} + xy - {y^2} = 0}\\{{x^2} - xy - {y^2} + 3x + 7y + 3 = 0}\end{array}} \right.\). Các cặp nghiệm (x;y) sao cho x,y đều là các số nguyên là :

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình \[\left( 1 \right) \Leftrightarrow \left( {x + y} \right)\left( {2x - y} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - y}\\{2x = y}\end{array}} \right.\]Trường hợp 1: x = −y thay vào (2) ta được \[\;{x^2} - 4x + 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 3}\end{array}} \right.\]

Suy ra hệ phương trình có hai nghiệm là \[\left( {1; - 1} \right),\left( {3; - 3} \right)\]

Trường hợp 2: 2x = y thay vào (2) ta được \[ - 5{x^2} + 17x + 3 = 0\]phương trình này không có nghiệm nguyên.

Vậy các cặp nghiệm (x;y) sao cho x,y đều là các số nguyên là (1;−1) và (3;−3).

Đáp án cần chọn là: C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\left\{ {\begin{array}{*{20}{c}}{\frac{3}{x} - \frac{6}{y} = 6}\\{\frac{2}{x} - \frac{1}{y} = - 2}\end{array}} \right.(x;y \ne 0)\)

Đặt \(\left\{ {\begin{array}{*{20}{c}}{\frac{1}{x} = a}\\{\frac{1}{y} = b}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{3a - 6b = 6}\\{2a - b = - 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 2}\\{b = - 2}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{{ - 1}}{2}}\\{y = \frac{{ - 1}}{2}}\end{array} \Rightarrow x + y = - 1} \right.\)

Đáp án cần chọn là: C

Câu 2

Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{{x^2} + {y^2} = {m^2}}\end{array}} \right.\) . Khẳng định nào sau đây là đúng ?

Lời giải

Ta có :\(\left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{{x^2} + {y^2} = {m^2}}\end{array}} \right. \Rightarrow {4^2} - 2P = {m^2} \Leftrightarrow P = \frac{{16 - {m^2}}}{2}\)

\[ \Rightarrow {S^2} - 4P = 16 - 2\left( {16 - {m^2}} \right) = 2{m^2} - 16 \ge 0 \Leftrightarrow \left| m \right| \ge \sqrt 8 \]

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 1}\\{y = x + m}\end{array}} \right.\) có đúng 1 nghiệm khi và chỉ khi :

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay