Câu hỏi:
25/05/2022 168Cho hàm số \[f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \]. Khẳng định nào sau đây là đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \]
Ta có:
\[\mathop {lim}\limits_{x \to + \infty } f(x) = \mathop {lim}\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\]
\[ = \mathop {lim}\limits_{x \to + \infty } \frac{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}\]
\[ = \mathop {lim}\limits_{x \to + \infty } \frac{{({x^2} + 2x + 4) - ({x^2} - 2x + 4)}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\]
\[\begin{array}{l} = \mathop {lim}\limits_{x \to + \infty } \frac{{4x}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {lim}\limits_{x \to + \infty } \frac{4}{{\sqrt {1 + \frac{2}{x} + \frac{4}{{{x^2}}}} + \sqrt {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} }} = 2\end{array}\]
\[\begin{array}{l}\mathop {lim}\limits_{x \to - \infty } f(x) = \mathop {lim}\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{({x^2} + 2x + 4) - ({x^2} - 2x + 4)}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{4x}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{\frac{{4x}}{x}}}{{\frac{{\sqrt {{x^2} + 2x + 4} }}{x} + \frac{{\sqrt {{x^2} - 2x + 4} }}{x}}}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{4}{{\sqrt {1 + \frac{2}{x} + \frac{4}{{{x^2}}}} + \sqrt {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} }} = \frac{4}{{ - 1 - 1}} = - 2\end{array}\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to + \infty } f(x) = - \mathop {\lim }\limits_{x \to - \infty } f(x)\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biết \[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 2\].Tính \[L = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {f\left( x \right) + 2} - f\left( x \right)}}{{f\left( x \right) - 2}}\]
Câu 2:
Cho a,b là các số nguyên và \[\mathop {\lim }\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}} = 20\]. Tính \[P = {a^2} + {b^2} - a - b\]
Câu 3:
Tính \[\mathop {\lim }\limits_{x \to - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} \] bằng?
Câu 4:
Tính \[\mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} - 2x - 1}}{{{x^2} + 1}}\] bằng?
Câu 5:
Tính \[\mathop {\lim }\limits_{x \to - 1} \left( {{x^2} - x + 7} \right)\]bằng?
Câu 7:
Tính \[\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{{x^2} - 9}}\]bằng?
về câu hỏi!