Câu hỏi:

25/05/2022 295

Cho hàm số \[f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \]. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \]

Ta có:

\[\mathop {lim}\limits_{x \to + \infty } f(x) = \mathop {lim}\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\]

\[ = \mathop {lim}\limits_{x \to + \infty } \frac{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}\]

\[ = \mathop {lim}\limits_{x \to + \infty } \frac{{({x^2} + 2x + 4) - ({x^2} - 2x + 4)}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\]

\[\begin{array}{l} = \mathop {lim}\limits_{x \to + \infty } \frac{{4x}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {lim}\limits_{x \to + \infty } \frac{4}{{\sqrt {1 + \frac{2}{x} + \frac{4}{{{x^2}}}} + \sqrt {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} }} = 2\end{array}\]

\[\begin{array}{l}\mathop {lim}\limits_{x \to - \infty } f(x) = \mathop {lim}\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{({x^2} + 2x + 4) - ({x^2} - 2x + 4)}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{4x}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{\frac{{4x}}{x}}}{{\frac{{\sqrt {{x^2} + 2x + 4} }}{x} + \frac{{\sqrt {{x^2} - 2x + 4} }}{x}}}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{4}{{\sqrt {1 + \frac{2}{x} + \frac{4}{{{x^2}}}} + \sqrt {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} }} = \frac{4}{{ - 1 - 1}} = - 2\end{array}\]

\[ \Rightarrow \mathop {\lim }\limits_{x \to + \infty } f(x) = - \mathop {\lim }\limits_{x \to - \infty } f(x)\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[\begin{array}{*{20}{l}}{L = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {f\left( x \right) + 2} - f\left( x \right)}}{{f\left( x \right) - 2}}}\\{\,\,\,\,\, = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + 2 - {f^2}\left( x \right)}}{{f\left( x \right) - 2}}.\frac{1}{{\sqrt {f\left( x \right) + 2} + f\left( x \right)}}}\\{\,\,\,\,\, = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left[ {f\left( x \right) + 1} \right]\left[ {f\left( x \right) - 2} \right]}}{{f\left( x \right) - 2}}.\frac{1}{{\sqrt {f\left( x \right) + 2} + f\left( x \right)}}}\\{\,\,\,\,\, = - \frac{3}{4}}\end{array}\]

Lời giải

Bước 1:

\[\begin{array}{*{20}{l}}{a{x^2} + bx - 5}\\{ = (ax + a + b)(x - 1) + a + b - 5}\end{array}\]

Bước 2:

\[\begin{array}{l}\mathop {lim}\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}}\\ = \mathop {lim}\limits_{x \to 1} (ax + a + b + \frac{{a + b - 5}}{{x - 1}}) = 20\end{array}\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a.1 + b + a = 20}\\{a + b - 5 = 0}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 15}\\{6 = - 10}\end{array}} \right.\)

\[ \Rightarrow P = {a^2} + {b^2} - a - b = 320\]

Đáp án cần chọn là: C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP