Câu hỏi:

25/05/2022 271

Cho hàm số \[f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \]. Khẳng định nào sau đây là đúng?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \]

Ta có:

\[\mathop {lim}\limits_{x \to + \infty } f(x) = \mathop {lim}\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\]

\[ = \mathop {lim}\limits_{x \to + \infty } \frac{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}\]

\[ = \mathop {lim}\limits_{x \to + \infty } \frac{{({x^2} + 2x + 4) - ({x^2} - 2x + 4)}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\]

\[\begin{array}{l} = \mathop {lim}\limits_{x \to + \infty } \frac{{4x}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {lim}\limits_{x \to + \infty } \frac{4}{{\sqrt {1 + \frac{2}{x} + \frac{4}{{{x^2}}}} + \sqrt {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} }} = 2\end{array}\]

\[\begin{array}{l}\mathop {lim}\limits_{x \to - \infty } f(x) = \mathop {lim}\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\left( {\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} } \right)\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}{{\left( {\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} } \right)}}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{({x^2} + 2x + 4) - ({x^2} - 2x + 4)}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{4x}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{{\frac{{4x}}{x}}}{{\frac{{\sqrt {{x^2} + 2x + 4} }}{x} + \frac{{\sqrt {{x^2} - 2x + 4} }}{x}}}\\ = \mathop {lim}\limits_{x \to - \infty } \frac{4}{{\sqrt {1 + \frac{2}{x} + \frac{4}{{{x^2}}}} + \sqrt {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} }} = \frac{4}{{ - 1 - 1}} = - 2\end{array}\]

\[ \Rightarrow \mathop {\lim }\limits_{x \to + \infty } f(x) = - \mathop {\lim }\limits_{x \to - \infty } f(x)\]

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biết \[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 2\].Tính  \[L = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {f\left( x \right) + 2} - f\left( x \right)}}{{f\left( x \right) - 2}}\]

Xem đáp án » 13/07/2024 1,523

Câu 2:

Cho a,b là các số nguyên và \[\mathop {\lim }\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}} = 20\]. Tính \[P = {a^2} + {b^2} - a - b\]

Xem đáp án » 25/05/2022 438

Câu 3:

Tính\[\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\frac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \] bằng?

Xem đáp án » 25/05/2022 414

Câu 4:

Tính \[\mathop {\lim }\limits_{x \to - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} \] bằng?

Xem đáp án » 25/05/2022 407

Câu 5:

Tính \[\mathop {\lim }\limits_{x \to - 1} \left( {{x^2} - x + 7} \right)\]bằng?

Xem đáp án » 25/05/2022 393

Câu 6:

Tính \[\mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} - 2x - 1}}{{{x^2} + 1}}\] bằng?

Xem đáp án » 25/05/2022 373

Câu 7:

Cho hàm số f(x) xác định trên \(\mathbb{R}\) thỏa mãn\[\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 16}}{{x - 2}} = 12\]. Giới hạn \[\mathop {lim}\limits_{x \to 2} \frac{{\sqrt {2f(x) - 16} - 4}}{{{x^2} + x - 6}}\] bằng \(\frac{a}{b}\)(phân số tối giản). Tổng \[{a^2} + {b^2}\;\]bằng:

Xem đáp án » 13/07/2024 371
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua