Câu hỏi:

13/07/2024 262 Lưu

Cho đa thức f(x) thỏa mãn \[\mathop {\lim }\limits_{x \to 4} \frac{{f\left( x \right) - 2018}}{{x - 4}} = 2019\]Biết \[L = \mathop {lim}\limits_{x \to 4} \frac{{1009[f(x) - 2018]}}{{\left( {\sqrt x - 2} \right)\left[ {\sqrt {2019f(x) + 2019} + 2019} \right]}}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bước 1: Tính\[\mathop {\lim }\limits_{x \to 4} f\left( x \right)\]

Đặt\[\frac{{f\left( x \right) - 2018}}{{x - 4}} = g\left( x \right) \Rightarrow f\left( x \right) = \left( {x - 4} \right)g\left( x \right) + 2018\]

\[ \Rightarrow \mathop {\lim }\limits_{x \to 4} f\left( x \right) = 2018\]

Bước 2: Nhân cả tử và mẫu với\[\sqrt x + 2\]. Tính L

\[\begin{array}{l}L = \mathop {lim}\limits_{x \to 4} \frac{{1009[f(x) - 2018]}}{{\left( {\sqrt x - 2} \right)\left[ {\sqrt {2019f(x) + 2019} + 2019} \right]}}\\ = \mathop {lim}\limits_{x \to 4} \frac{{1009[f(x) - 2018](\surd x + 2)}}{{(x - 4)\left[ {\sqrt {2019f(x) + 2019} + 2019} \right]}}\\ = 1009.\mathop {lim}\limits_{x \to 4} \frac{{f(x) - 2018}}{{x - 4}}.\frac{{\sqrt x + 2}}{{\sqrt {2019f(x) + 2019} + 2019}}\\ = 1009.2019\frac{{\sqrt {2018} + 2}}{{\sqrt {2019.2018 + 2019} + 2019}}\\ = 1009.2019.\frac{{\sqrt 4 + 2}}{{2019 + 2019}} = 2018\end{array}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[\begin{array}{*{20}{l}}{L = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {f\left( x \right) + 2} - f\left( x \right)}}{{f\left( x \right) - 2}}}\\{\,\,\,\,\, = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + 2 - {f^2}\left( x \right)}}{{f\left( x \right) - 2}}.\frac{1}{{\sqrt {f\left( x \right) + 2} + f\left( x \right)}}}\\{\,\,\,\,\, = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left[ {f\left( x \right) + 1} \right]\left[ {f\left( x \right) - 2} \right]}}{{f\left( x \right) - 2}}.\frac{1}{{\sqrt {f\left( x \right) + 2} + f\left( x \right)}}}\\{\,\,\,\,\, = - \frac{3}{4}}\end{array}\]

Câu 2

Lời giải

\[\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\frac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\frac{{{x^2}{{(x - 1)}^2}}}{{2{x^4} + {x^2} + 1}}} } \right]\\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\frac{{{x^2}({x^2} - 2x + 1)}}{{2{x^4} + {x^2} + 1}}} } \right]\\ = \mathop {\mathop {\lim }\limits_{x \to - \infty } \left[ { - {{\sqrt {\frac{{{x^4} - 2{x^3} + {x^2}}}{{2{x^4} + {x^2} + 1}}} }^{}}} \right]}\limits_{x \to - \infty } \\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\frac{{1 - \frac{2}{x} + \frac{1}{{{x^2}}}}}{{2 + \frac{1}{{{x^2}}} + \frac{1}{{{x^4}}}}}} } \right] = - \frac{{\sqrt 2 }}{2}\end{array}\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP