Câu hỏi:
13/07/2024 213Cho đa thức f(x) thỏa mãn \[\mathop {\lim }\limits_{x \to 4} \frac{{f\left( x \right) - 2018}}{{x - 4}} = 2019\]Biết \[L = \mathop {lim}\limits_{x \to 4} \frac{{1009[f(x) - 2018]}}{{\left( {\sqrt x - 2} \right)\left[ {\sqrt {2019f(x) + 2019} + 2019} \right]}}\]
Quảng cáo
Trả lời:
Bước 1: Tính\[\mathop {\lim }\limits_{x \to 4} f\left( x \right)\]
Đặt\[\frac{{f\left( x \right) - 2018}}{{x - 4}} = g\left( x \right) \Rightarrow f\left( x \right) = \left( {x - 4} \right)g\left( x \right) + 2018\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to 4} f\left( x \right) = 2018\]
Bước 2: Nhân cả tử và mẫu với\[\sqrt x + 2\]. Tính L
\[\begin{array}{l}L = \mathop {lim}\limits_{x \to 4} \frac{{1009[f(x) - 2018]}}{{\left( {\sqrt x - 2} \right)\left[ {\sqrt {2019f(x) + 2019} + 2019} \right]}}\\ = \mathop {lim}\limits_{x \to 4} \frac{{1009[f(x) - 2018](\surd x + 2)}}{{(x - 4)\left[ {\sqrt {2019f(x) + 2019} + 2019} \right]}}\\ = 1009.\mathop {lim}\limits_{x \to 4} \frac{{f(x) - 2018}}{{x - 4}}.\frac{{\sqrt x + 2}}{{\sqrt {2019f(x) + 2019} + 2019}}\\ = 1009.2019\frac{{\sqrt {2018} + 2}}{{\sqrt {2019.2018 + 2019} + 2019}}\\ = 1009.2019.\frac{{\sqrt 4 + 2}}{{2019 + 2019}} = 2018\end{array}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biết \[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 2\].Tính \[L = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {f\left( x \right) + 2} - f\left( x \right)}}{{f\left( x \right) - 2}}\]
Câu 2:
Cho a,b là các số nguyên và \[\mathop {\lim }\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}} = 20\]. Tính \[P = {a^2} + {b^2} - a - b\]
Câu 3:
Tính\[\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\frac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \] bằng?
Câu 4:
Tính \[\mathop {\lim }\limits_{x \to - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} \] bằng?
Câu 5:
Tính \[\mathop {\lim }\limits_{x \to - 1} \left( {{x^2} - x + 7} \right)\]bằng?
Câu 6:
Cho hàm số f(x) xác định trên \(\mathbb{R}\) thỏa mãn\[\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 16}}{{x - 2}} = 12\]. Giới hạn \[\mathop {lim}\limits_{x \to 2} \frac{{\sqrt {2f(x) - 16} - 4}}{{{x^2} + x - 6}}\] bằng \(\frac{a}{b}\)(phân số tối giản). Tổng \[{a^2} + {b^2}\;\]bằng:
Câu 7:
Tính \[\mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} - 2x - 1}}{{{x^2} + 1}}\] bằng?
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận