Với giá trị nào của m dưới đây thì phương trình sinx = m có nghiệm?
A.m = −3
B.m = −2
C.m = 0
D.m = 3
Quảng cáo
Trả lời:

Phương trình sinx=m có nghiệm nếu\[\left| m \right| \le 1\]và vô nghiệm nếu\[\left| m \right| >1\]
Đáp án A:\[|m| = | - 3| = 3 >1\] =>Loại
Đáp án B: \[|m| = | - 2| = 2 >1\]=>Loại
Đáp án C: \[|m| = |0| = 0 \le 1\] =>Nhận
Đáp án D:\[|m| = |3| = 3 >1\] =>Loại
Đáp án cần chọn là: C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[x = \frac{\pi }{8} + k\pi \left( {k \in Z} \right)\]
B. \[x = \frac{\pi }{8} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]
C. \[x = \frac{\pi }{8} + \frac{{k\pi }}{4}\left( {k \in Z} \right)\]
D. \[x = \frac{\pi }{8} + \frac{{k\pi }}{2}\left( {k \in Z} \right)\]
Lời giải
ĐKXĐ: \[\sin \left( {5x - \frac{\pi }{8}} \right) \ne 0 \Leftrightarrow 5x - \frac{\pi }{8} \ne k\pi \Leftrightarrow x \ne \frac{\pi }{{40}} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]
Ta có:
\[\sqrt 3 \cot \left( {5x - \frac{\pi }{8}} \right) = 0 \Leftrightarrow \cot \left( {5x - \frac{\pi }{8}} \right) = 0 \Leftrightarrow 5x - \frac{\pi }{8} = \frac{\pi }{2} + k\pi \]
\[ \Leftrightarrow 5x = \frac{{5\pi }}{8} + k\pi \Leftrightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]
Đáp án cần chọn là: B
Câu 2
A.980
B.51
C.981
D.1000
Lời giải
Ta có: \[\cot 20x = 1 \Leftrightarrow 20x = \frac{\pi }{4} + k\pi \Leftrightarrow x = \frac{\pi }{{80}} + \frac{{k\pi }}{{20}}\,\,\left( {k \in \mathbb{Z}} \right)\]
Theo bài ra ta có:
\[\begin{array}{*{20}{l}}{x \in \left[ { - 50\pi ;0} \right]}\\{ \Leftrightarrow - 50\pi \le \frac{\pi }{{80}} + \frac{{k\pi }}{{20}} \le 0}\\{ \Leftrightarrow - 50 \le \frac{1}{{80}} + \frac{k}{{20}} \le 0}\\{ \Leftrightarrow - \frac{{4001}}{4} \le k \le - \frac{1}{4}}\\{ \Leftrightarrow - 1000,25 \le k \le - 0,25}\end{array}\]
Mà\[k \in \mathbb{Z} \Rightarrow - 1000 \le k \le - 1\]
\[ \Rightarrow k \in \left\{ { - 1000; - 999;....; - 2; - 1} \right\}\]
Tập trên có \[ - 1 - ( - 1000) + 1 = 1000\]phần tử suy ra có 1000 giá trị nguyên của kk thỏa mãn.
Vậy phương trình đã cho có 1000 nghiệm thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: D
Câu 3
A.\[x = \frac{{k\pi }}{2}\,\,\left( {k \in Z} \right)\]
B. \[x = k\pi \,\,\left( {k \in Z} \right)\]
C. \[x = k2\pi \,\,\left( {k \in Z} \right)\]
D. Kết quả khác
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[x = \frac{\pi }{2}\]
B. \[x = \pi \]
C. \[x = 0\]
D. \[x = - \frac{\pi }{2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[k2\pi \left( {k \in Z} \right)\]
B. \[k\pi \left( {k \in Z} \right)\]
C. \[\pi + k2\pi \left( {k \in Z} \right)\]
D. Cả 3 đáp án đúng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\[x = \frac{{5\pi }}{6} + k2\pi \]
B. \[x = \frac{\pi }{6}\]
C. \[x = \frac{{5\pi }}{6}\]
D. \[x = \frac{\pi }{3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.