Câu hỏi:

25/05/2022 872 Lưu

Nghiệm của phương trình \[{\sin ^2}x - \sin x = 0\] thỏa điều kiện: \[0 < x < \pi .\]

A.\[x = \frac{\pi }{2}\]

B. \[x = \pi \]

C. \[x = 0\]

D. \[x = - \frac{\pi }{2}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bước 1:

\[si{n^2}x - sinx = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = 0}\\{sinx = 1}\end{array}} \right.\]

Bước 2:

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = \frac{\pi }{2} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)

Bước 3:

Xét\[x = k\pi ,k \in \mathbb{Z}\]

Vì\[0 < x < \pi \] nên nghiệm của phương trình thỏa mãn:

\[0 < k\pi < \pi \Leftrightarrow 0 < k < 1\]

Ta không thể tìm được số nguyên nào thỏa mãn điều trên

=>Không có số k trong trường hợp này.

Xét\[x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\]

Vì\[0 < x < \pi \]nên nghiệm của phương trình thỏa mãn:

\[0 < \frac{\pi }{2} + k2\pi < \pi \Leftrightarrow - \frac{\pi }{2} < k2\pi < \frac{\pi }{2}\]

\[ \Leftrightarrow - \frac{1}{4} < k < \frac{1}{4}\]mà\[k \in \mathbb{Z} \Rightarrow k = 0\]Thay vào x ta được:

\[x = \frac{\pi }{2} + 0 = \frac{\pi }{2}\]

Vậy phương trình có 1 nghiệm duy nhất là \[x = \frac{\pi }{2}\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình sinx=m có nghiệm nếu\[\left| m \right| \le 1\]và vô nghiệm nếu\[\left| m \right| >1\]

Đáp án A:\[|m| = | - 3| = 3 >1\] =>Loại

Đáp án B: \[|m| = | - 2| = 2 >1\]=>Loại

Đáp án C: \[|m| = |0| = 0 \le 1\] =>Nhận

Đáp án D:\[|m| = |3| = 3 >1\] =>Loại

Đáp án cần chọn là: C

Câu 2

A.\[x = \frac{\pi }{8} + k\pi \left( {k \in Z} \right)\]

B. \[x = \frac{\pi }{8} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]

C. \[x = \frac{\pi }{8} + \frac{{k\pi }}{4}\left( {k \in Z} \right)\]

D. \[x = \frac{\pi }{8} + \frac{{k\pi }}{2}\left( {k \in Z} \right)\]

Lời giải

ĐKXĐ: \[\sin \left( {5x - \frac{\pi }{8}} \right) \ne 0 \Leftrightarrow 5x - \frac{\pi }{8} \ne k\pi \Leftrightarrow x \ne \frac{\pi }{{40}} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]

Ta có:

\[\sqrt 3 \cot \left( {5x - \frac{\pi }{8}} \right) = 0 \Leftrightarrow \cot \left( {5x - \frac{\pi }{8}} \right) = 0 \Leftrightarrow 5x - \frac{\pi }{8} = \frac{\pi }{2} + k\pi \]

\[ \Leftrightarrow 5x = \frac{{5\pi }}{8} + k\pi \Leftrightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[x = \frac{{k\pi }}{2}\,\,\left( {k \in Z} \right)\]

B. \[x = k\pi \,\,\left( {k \in Z} \right)\]

C. \[x = k2\pi \,\,\left( {k \in Z} \right)\]

D. Kết quả khác

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[k2\pi \left( {k \in Z} \right)\]

B. \[k\pi \left( {k \in Z} \right)\]

C. \[\pi + k2\pi \left( {k \in Z} \right)\]

D. Cả 3 đáp án đúng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\[x = \frac{{5\pi }}{6} + k2\pi \]

B. \[x = \frac{\pi }{6}\]

C. \[x = \frac{{5\pi }}{6}\]

D. \[x = \frac{\pi }{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP