Câu hỏi:

25/05/2022 743

Nghiệm của phương trình \[{\sin ^2}x - \sin x = 0\] thỏa điều kiện: \[0 < x < \pi .\]

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1:

\[si{n^2}x - sinx = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = 0}\\{sinx = 1}\end{array}} \right.\]

Bước 2:

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = \frac{\pi }{2} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)

Bước 3:

Xét\[x = k\pi ,k \in \mathbb{Z}\]

Vì\[0 < x < \pi \] nên nghiệm của phương trình thỏa mãn:

\[0 < k\pi < \pi \Leftrightarrow 0 < k < 1\]

Ta không thể tìm được số nguyên nào thỏa mãn điều trên

=>Không có số k trong trường hợp này.

Xét\[x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\]

Vì\[0 < x < \pi \]nên nghiệm của phương trình thỏa mãn:

\[0 < \frac{\pi }{2} + k2\pi < \pi \Leftrightarrow - \frac{\pi }{2} < k2\pi < \frac{\pi }{2}\]

\[ \Leftrightarrow - \frac{1}{4} < k < \frac{1}{4}\]mà\[k \in \mathbb{Z} \Rightarrow k = 0\]Thay vào x ta được:

\[x = \frac{\pi }{2} + 0 = \frac{\pi }{2}\]

Vậy phương trình có 1 nghiệm duy nhất là \[x = \frac{\pi }{2}\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với giá trị nào của m dưới đây thì phương trình sinx = m có nghiệm?

Xem đáp án » 25/05/2022 3,190

Câu 2:

Phương trình \[\sqrt 3 \cot \left( {5x - \frac{\pi }{8}} \right) = 0\]có nghiệm là:

Xem đáp án » 25/05/2022 2,479

Câu 3:

Nghiệm của phương trình \[\cot x = \cot 2x\] là :

Xem đáp án » 25/05/2022 768

Câu 4:

Phương trình \[\cot 20x = 1\] có bao nhiêu nghiệm thuộc khoảng \[\left[ { - 50\pi ;0} \right]?\]

Xem đáp án » 25/05/2022 570

Câu 5:

Cho phương trình \[sinx = sin\alpha \]. Chọn kết luận đúng.

Xem đáp án » 25/05/2022 427

Câu 6:

Nghiệm của phương trình \[\sin x = \frac{1}{2}\] thỏa mãn \[ - \frac{\pi }{2} \le x \le \frac{\pi }{2}\] là:

Xem đáp án » 25/05/2022 422

Bình luận


Bình luận