Câu hỏi:
25/05/2022 380Nghiệm của phương trình \[\sin x = \frac{1}{2}\] thỏa mãn \[ - \frac{\pi }{2} \le x \le \frac{\pi }{2}\] là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Bước 1:
Ta có:\[\sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{6}\]
Bước 2:
\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\end{array}} \right.(k \in Z)\)
Bước 3:
+) Xét\[x = \frac{\pi }{6} + k2\pi \]
Ta có\[ - \frac{\pi }{2} \le x \le \frac{\pi }{2} \Leftrightarrow - \frac{\pi }{2} \le \frac{\pi }{6} + k2\pi \le \frac{\pi }{2}\]
\[\begin{array}{*{20}{l}}{ - \frac{{2\pi }}{3} \le k2\pi \le \frac{\pi }{3} \Leftrightarrow - \frac{{2\pi }}{{3.2\pi }} \le k \le \frac{\pi }{{3.2\pi }}}\\{ \Leftrightarrow - \frac{1}{3} \le k \le \frac{1}{6}}\end{array}\]
Mà\[k \in \mathbb{Z} \Rightarrow k = 0\] Thay vào x ta được:\[x = \frac{\pi }{6}\]
+) Xét\[x = \frac{{5\pi }}{6} + k2\pi \]
\[\begin{array}{*{20}{l}}{ - \frac{\pi }{2} \le x \le \frac{\pi }{2} \Leftrightarrow - \frac{\pi }{2} \le \frac{{5\pi }}{6} + k2\pi \le \frac{\pi }{2}}\\{ \Leftrightarrow - \frac{{4\pi }}{3} \le k2\pi \le - \frac{\pi }{3} \Leftrightarrow - \frac{{4\pi }}{{3.2\pi }} \le k \le - \frac{\pi }{{3.2\pi }}}\\{ \Leftrightarrow - \frac{2}{3} \le k \le - \frac{1}{6}}\end{array}\]
Mà\[k \in \mathbb{Z}\] nên không có giá trị k thỏa mãn
Vậy phương trình ban đầu có nghiệm duy nhất là\[x = \frac{\pi }{6}\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Với giá trị nào của m dưới đây thì phương trình sinx = m có nghiệm?
Câu 2:
Phương trình \[\sqrt 3 \cot \left( {5x - \frac{\pi }{8}} \right) = 0\]có nghiệm là:
Câu 4:
Nghiệm của phương trình \[{\sin ^2}x - \sin x = 0\] thỏa điều kiện: \[0 < x < \pi .\]
Câu 5:
Phương trình \[\cot 20x = 1\] có bao nhiêu nghiệm thuộc khoảng \[\left[ { - 50\pi ;0} \right]?\]
về câu hỏi!