Câu hỏi:
25/05/2022 7,258Có bao nhiêu số tự nhiên có 4 chữ số mà tổng tất cả các chữ số của số đó bằng 7.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi số cần tìm có dạng\[\overline {abcd} \left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{N},\,\,0 \le a,\,\,b,\,\,c,\,\,d \le 9,\,\,a \ne 0} \right)\]
TH1: Trong 4 chữ số a, b, c, d có 3 chữ số bằng 0 \[ \Rightarrow b = c = d = 0,\,\,a = 7\]
Do đó có 1 số thỏa mãn.
TH2: Trong 4 chữ số a, b, c, d có 2 chữ số bằng 0.
- Chọn vị trí cho 2 chữ số 0 có\[C_3^2 = 3\] cách.
- Tổng hai chữ số còn lại là 7, ta có
\[7 = 6 + 1 = 5 + 2 = 4 + 3 = 3 + 4 = 2 + 5 = 1 + 6\] nên có 6 cách chọn 2 chữ số còn lại.
Do đó trường hợp này có 18 số.
TH3: Trong 4 chữ số a, b, c, d có 1 chữ số bằng 0.
- Chọn vị trí cho 1 chữ số 0 có\[C_3^1 = 3\] cách.
- Tổng 3 chữ số còn lại bằng 7, ta có:
\[7 = 1 + 1 + 5 = 1 + 2 + 4 = 1 + 3 + 3 = 2 + 2 + 3\]
+ Với bộ số (1;2;4) có\[3! = 6\] cách chọn 3 chữ số còn lại.
+ Với 3 bộ số còn lại có\[\frac{{3!}}{{2!}} = 3\] cách chọn 3 chữ số còn lại.
Do đó trường hợp này có\[3.\left( {6 + 3.3} \right) = 45\] số.
TH4: Trong 4 chữ số a, b, c, d không có chữ số nằm bằng 0.
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{7 = 1 + 1 + 1 + 4}\\{7 = 1 + 1 + 2 + 3}\\{7 = 1 + 2 + 2 + 2}\end{array}} \right.\)
+ Với bộ số (1;1;1;4), có\[\frac{{4!}}{{3!}} = 4\] cách chọn 4 chữ số a, b, c, d.
+ Với bộ số (1;1;2;3), có\[\frac{{4!}}{{2!}} = 12\] cách chọn 4 chữ số a, b, c, d.
+ Với bộ số (1;2;2;2), có\[\frac{{4!}}{{3!}} = 4\] cách chọn 4 chữ số a, b, c, d.
Do đó trường hợp này có 4 + 12 + 4 = 20 số thỏa mãn.
Vậy có tất cả: 1 + 18 + 45 + 20 = 84 số.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một thầy giáo có 20 quyển sách khác nhau gồm 7 quyển sách Toán, 5 quyển sách Lí và 8 quyển sách Hóa. Thầy chọn ra 9 quyển sách để tặng cho học sinh. Hỏi thầy giáo đó có bao nhiêu cách chọn sao cho số sách còn lại của thầy có đủ 3 môn?
Câu 3:
Một nhóm gồm 2 học sinh lớp 10, 2 học sinh lớp 11 và 2 học sinh lớp 12 xếp thành hai hàng ngang để chụp ảnh, mỗi hàng 3 người. Gọi n là số cách xếp sao cho 2 học sinh lớp 10 đứng ở hàng phía trước và 2 học sinh lớp 12 đứng ở hàng phía sau. Tính n.
Câu 4:
Một lớp 11 có 30 học sinh, gồm 15 nam và 15 nữ. Gọi a là số cách xếp các học sinh thành hai hàng, một hàng nam và một hàng nữ trong lúc tập thể dục giữa giờ. Tính a.
Câu 5:
Cho tập \[A = \left\{ {1;2;4;6;7;9} \right\}\] Hỏi có thể lập được từ tập A bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau, trong đó không có mặt chữ số 7.
về câu hỏi!