Câu hỏi:

13/07/2024 9,597

Một thầy giáo có 20 quyển sách khác nhau gồm 7 quyển sách Toán, 5 quyển sách Lí và 8 quyển sách Hóa. Thầy chọn ra 9 quyển sách để tặng cho học sinh. Hỏi thầy giáo đó có bao nhiêu cách chọn sao cho số sách còn lại của thầy có đủ 3 môn?

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1: Số cách chọn ra 9 quyển sách bất kì

Số cách chọn ra 9 quyển sách bất kì có \[C_{20}^9 = 167960\].

Bước 2: Tìm số cách chọn sao cho số sách còn lại của thầy không có đủ 3 môn

Ta tìm số cách chọn sao cho số sách còn lại của thầy không có đủ 3 môn.

Vì số sách còn lại của thầy không đủ ba môn nên thầy đã tặng hết ít nhất một môn.

TH1: Tặng 7 quyển sách Toán + 2 quyển sách khác sách Toán: có \[C_7^7.C_{13}^2 = 78\] cách

TH2: Tặng 5 quyển sách Lí + 4 quyển sách khác sách Lí: có \[C_5^5.C_{15}^4 = 1365\] cách.

TH3: Tặng 8 quyển sách Hóa + 1 quyển sách khác sách Hóa: có \[C_8^8.C_{12}^1 = 12\] cách.

⇒ số cách chọn sao cho số sách còn lại của thầy không có đủ 3 môn là: \[78 + 1365 + 12 = 1455\] cách.

Bước 3: Lấy phần bù

Vậy số cách chọn sao cho số sách còn lại của thầy có đủ 3 môn là: \[167960 - 1455 = 166505\] cách.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên có 4 chữ số mà tổng tất cả các chữ số của số đó bằng 7.

Xem đáp án » 25/05/2022 8,422

Câu 2:

Số chỉnh hợp chập 5 của 9 phần tử là:

Xem đáp án » 25/05/2022 3,451

Câu 3:

Một nhóm gồm 2 học sinh lớp 10, 2 học sinh lớp 11 và 2 học sinh lớp 12 xếp thành hai hàng ngang để chụp ảnh, mỗi hàng 3 người. Gọi n là số cách xếp sao cho 2 học sinh lớp 10 đứng ở hàng phía trước và 2 học sinh lớp 12 đứng ở hàng phía sau. Tính n.

Xem đáp án » 13/07/2024 3,035

Câu 4:

Một lớp 11 có 30 học sinh, gồm 15 nam và 15 nữ. Gọi a là số cách xếp các học sinh thành hai hàng, một hàng nam và một hàng nữ trong lúc tập thể dục giữa giờ. Tính a.

Xem đáp án » 13/07/2024 2,775

Câu 5:

Cho tập \[A = \left\{ {1;2;4;6;7;9} \right\}\] Hỏi có thể lập được từ tập A bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau, trong đó không có mặt chữ số 7.

Xem đáp án » 25/05/2022 2,285

Câu 6:

Số các hoán vị khác nhau của n phần tử là:

Xem đáp án » 25/05/2022 1,228

Bình luận


Bình luận