Câu hỏi:
25/06/2022 204Hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi O và O′ lần lượt là tâm hình bình hành ABCD và ABEF. OO′ song song với:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì O và O′ lần lượt là tâm hình bình hành ABCD và ABEF nên O là trung điểm của BD; O′ là trung điểm của FB.
Xét tam giác BDF có: OO′ là đường trung bình \[ \Rightarrow OO'//DF\]Mà \[DF \subset \left( {DCEF} \right);DF \subset \left( {ADF} \right)\,;\,DF//\left( {BCE} \right)\] Nên \[OO'//(DCEF);OO'//(ADF);OO'//(BCE)\] (cùng song song với DF).
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD. Gọi M,N lần lượt là trọng tâm của tam giác SAB và ABC.ABC. Khi đó MN song song với
Câu 2:
Cho tứ diện ABCD, gọi G là trọng tâm tam giác ACD, M thuộc đoạn thẳng BC sao cho CM=2MB. Chọn mệnh đề đúng trong các mệnh đề sau?
Câu 4:
Cho hình chóp S.ABC, M là một điểm nằm trong tam giác ABC. Các đường thẳng qua MM và song song với SA,SB,SC cắt các mặt (SBC),(SAC),(SAB) lần lượt tại A′,B′,C′. \[\frac{{MA'}}{{SA}} + \frac{{MB'}}{{SB}} + \frac{{MC'}}{{SC}}\] có giá trị không đổi bằng bao nhiêu khi M di động trong tam giác ABC?
Câu 5:
Cho tứ diện ABCD, M là trung điểm của cạnh CD, G là trọng tâm tứ diện. Khi đó 2 đường thẳng AD và GM là hai đường thẳng:
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Một mặt phẳng (P) đồng thời song song với AC và SB lần lượt cắt các đoạn thẳng SA, AB, BC, SC, SD và BD tại M, N, E, F, I, J. Xét các khẳng định sau:
(1) MN // (SCD)
(2) EF // (SAD)
(3) NE // (SAC)
(3) IJ // (SAB)
Có bao nhiêu khẳng định đúng?
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N,P,Q, lần lượt là các điểm nằm trên các cạnh BC,SC,SD,AD sao cho MN//BS,NP//CD,MQ//CD. Hỏi PQ song song với mặt phẳng nào sau đây?
về câu hỏi!