Câu hỏi:

25/06/2022 1,931

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, tam giác SBD  cân tại S. Gọi M là điểm tùy ý trên AO. Mặt phẳng (α) đi qua M và song song với SA,BD  cắt SO,SB,AB tại N,P,Q. Tứ giác MNPQ  là hình gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, tam giác SBD  cân tại S. Gọi M là điểm tùy ý trên AO. Mặt phẳng  (ảnh 1)

Tam giác SBD cân tại S  nên SB=SD .

Suy ra \[{\rm{\Delta }}SBC = {\rm{\Delta }}SDC\left( {c.c.c} \right) \Rightarrow \widehat {SCB} = \widehat {SCD}\]

Gọi II  là trung điểm của SCSC .

Xét hai tam giác IBC và ICD  có:

IC chung

BC=DC (ABCD là hình vuông)

\[\widehat {ICB} = \widehat {ICD}\,\left( {cmt} \right)\]

Do đó \[{\rm{\Delta }}IBC = {\rm{\Delta }}IDC\left( {c.g.c} \right) \Rightarrow IB = ID\] hay tam giác ICD  cân tại I .

Do O  là trung điểm của BD  nên IO  là đường trung tuyến trong tam giác cân

\[ \Rightarrow IO \bot BD.\]

Mà SA//IO nên\[SA \bot BD.\]

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{M \in (\alpha ) \cap (ABCD)}\\{BD\parallel (\alpha }\\{BD \subset (ABCD)}\end{array}} \right.\)

Suy ra giao tuyến của (α) với (ABCD)  là đường thẳng qua M  và song song với BD  cắt AB  tại \[Q \Rightarrow MQ\parallel BD.\,\,\left( 1 \right)\]

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{Q \in (\alpha ) \cap (SAB)}\\{SA\parallel (\alpha )}\\{SA \subset (SAB)}\end{array}} \right.\) suy ra giao tuyến của (α)với (SAB)  là đường thẳng đi qua Q  và song song với SA  cắt SB tại P . Do đó \[QP//SA\,\,\,\,(2)\]

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{P \in (\alpha ) \cap (SBD)}\\{BD\parallel (\alpha )}\\{BD \subset (SBD)}\end{array}} \right.\) suy ra giao tuyến của (α)với (SBD)  là đường thẳng đi qua P và song song với BD  cắt SO  tại N . Do đó PN//BD (3).

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{(\alpha ) \cap (SAC) = MN}\\{SA\parallel (\alpha )}\\{SA \subset (SAC)}\end{array}} \right. \Rightarrow MN\parallel SA\)(4)

Từ (1) và (3) suy ra \[PN//MQ//BD\], từ (2) và (4) suy ra \[QP//MN//SA\]. Do đó MNPQ là hình bình hành.

Lại có \[SA \bot BD \Rightarrow MN \bot MQ\].

Vậy MNPQ  là hình chữ nhật.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 3)

Gọi mặt phẳng chứa AM và song song với BD là (α).

Trong (SBD) kẻ\[MN//BD\,\,\left( {N \in SB} \right)\] khi đó ta có\[\left( \alpha \right) \equiv \left( {AMN} \right)\]

Gọi\[O = AC \cap BD\] trong (SBD) gọi \[\left\{ I \right\} = MN \cap SO\]  trong (SAC) gọi\[K = AI \cap SC\] ta có:

\(\left\{ {\begin{array}{*{20}{c}}{K \in AI \subset (AMN)}\\{K \in SC}\end{array}} \right. \Rightarrow K = \left( {AMN} \right) \cap SC\) hay\[K = \left( \alpha \right) \cap SC\]

Áp dụng định lí Talets ta có\[\frac{{SI}}{{SO}} = \frac{{SM}}{{SD}} = \frac{2}{3}\]

\[ \Rightarrow \frac{{IS}}{{IO}} = 2\]

Ta có: O là trung điểm của AC nên\[\frac{{AO}}{{AC}} = \frac{1}{2}\]

Áp dụng định lí Menelaus trong tam giác SOC, cát tuyến AIK ta có:

\[\frac{{IS}}{{IO}}.\frac{{AO}}{{AC}}.\frac{{KC}}{{KS}} = 1 \Leftrightarrow 2.\frac{1}{2}.\frac{{KC}}{{KS}} = 1 \Leftrightarrow \frac{{KC}}{{KS}} = 1 \Rightarrow \frac{{SK}}{{SC}} = \frac{1}{2}\]

Đáp án cần chọn là: C

Lời giải

Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho  (ảnh 1)

Ta có \[\frac{{BM}}{{C'N}} = \frac{{MB'}}{{ND'}} = \frac{{BB'}}{{C'D'}} = 1\] do đó theo định lý ta-let trong không gian thì  BC′, MN, B′D′ lần lượt cùng song song (hoặc nằm trong) với một mặt phẳng.

Mà \[B'D'//\left( {BC'D} \right)\] và \[BC' \subset \left( {BC'D} \right)\] nên ta có \[MN//\left( {BC'D} \right)\].

Chứng minh tương tự ta có \[NP//\left( {BC'D} \right)\] Do đó \[\left( {MNP} \right)//\left( {BC'D} \right)\]

Qua P, kẻ \[PQ//BD,Q \in AB\]. Qua  N, kẻ \[NF//{\rm{C'}}D,F \in D'D\].

Qua M, kẻ \[ME//{\rm{BC'}},E \in B'C'\]

Khi đó ta có thiết diện tạo bởi mặt phẳng (MNP) với hình lập phương là lục giác MENFPQ.

Dễ thấy\[EN = PF = MQ = \frac{{a\sqrt 2 }}{3},NF = PQ = ME = \frac{{2a\sqrt 2 }}{3}\] và tam giác  BC′D là tam giác đều vì\[BC' = BD = DC' = a\sqrt 2 \]

Do đó\[\widehat {ENF} = \widehat {NFP} = \widehat {FPQ} = \widehat {PQM} = \widehat {QME} = \widehat {MEN} = {120^ \circ }\]

Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho  (ảnh 2)

Kẻ các đường cao EH,PK của các hình thang cân MENF,MQPF ta có:

\[EH = ME\sin {60^0} = \frac{{2a\sqrt 2 }}{3}.\frac{{\sqrt 3 }}{2} = \frac{{a\sqrt 6 }}{3}\]

\[\begin{array}{*{20}{l}}{PK = FP\sin {{60}^0} = \frac{{a\sqrt 2 }}{3}.\frac{{\sqrt 3 }}{2} = \frac{{a\sqrt 6 }}{6}}\\{MH = ME\cos {{60}^0} = \frac{{2a\sqrt 2 }}{3}.\frac{1}{2} = \frac{{a\sqrt 2 }}{3}}\\{ \Rightarrow MF = 2MH + EN = 2.\frac{{a\sqrt 2 }}{3} + \frac{{a\sqrt 2 }}{3} = a\sqrt 2 }\end{array}\]

Diện tích hình thang MENF là:

\[{S_1} = \frac{1}{2}\left( {EN + MF} \right).EH = \frac{1}{2}\left( {\frac{{a\sqrt 2 }}{3} + a\sqrt 2 } \right).\frac{{a\sqrt 6 }}{3} = \frac{{4{a^2}\sqrt 3 }}{9}\]

Diện tích hình thang MQPF là:

\[{S_2} = \frac{1}{2}\left( {QP + MF} \right).PK = \frac{1}{2}\left( {\frac{{2a\sqrt 2 }}{3} + a\sqrt 2 } \right).\frac{{a\sqrt 6 }}{6} = \frac{{5{a^2}\sqrt 3 }}{{18}}\]

Vậy \[{S_{MENFPQ}} = {S_1} + {S_2} = \frac{{4{a^2}\sqrt 3 }}{9} + \frac{{5{a^2}\sqrt 3 }}{{18}} = \frac{{13{a^2}\sqrt 3 }}{{18}}\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP