Câu hỏi:
25/06/2022 496Cho hình chóp S.ABCD . Gọi M,N là hai điểm lần lượt thuộc cạnh AB và CD;(α) là mặt phẳng đi qua MN và song song với SA . Tìm điều kiện của MN để thiết diện của hình chóp khi cắt bởi mp(α) là một hình thang.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
Ta có:
\(\left\{ {\begin{array}{*{20}{c}}{M \in (\alpha ) \cap (SAB)}\\{(\alpha )\parallel SA}\\{SA \subset (SAB)}\end{array}} \right. \Rightarrow (SAB) \cap (\alpha ) = MQ\parallel SA(Q \in SB)\)
Trong (ABCD), gọi \[I = MN \cap AC\] Ta có:
\[\begin{array}{*{20}{l}}{I \in MN,\,MN \subset \left( \alpha \right) \Rightarrow I \in \left( \alpha \right).}\\{I \in AC,\,AC \subset \left( {SAC} \right) \Rightarrow T \in \left( {SAC} \right)}\\{ \Rightarrow I \in \left( \alpha \right) \cap \left( {SAC} \right).}\end{array}\]
Vậy
\(\left\{ {\begin{array}{*{20}{c}}{I \in (\alpha ) \cap (SAC)}\\{(\alpha )\parallel SA}\\{SA \subset (SAC)}\end{array}} \right. \Rightarrow (SAC) \cap (\alpha ) = IP\parallel SA(P \in SC)\)
Thiết diện là tứ giác MNPQ .
Để tứ giác MNPQ là hình thang thì cần MQ//NP hoặc MN//PQ .
Trường hợp 1: Nếu MQ//NP thì
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{MQ\parallel NP}\\{MQ\parallel SA}\end{array}} \right. \Rightarrow SA\parallel NP,\) mà \[NP \subset \left( {SCD} \right) \Rightarrow SA\parallel \left( {SCD} \right)\] (Vô lí).
Trường hợp 2: Nếu MN//PQ thì ta có các mặt phẳng (ABCD),(α),(SBC) đôi một cắt nhau theo ba giao tuyến là MN,BC,PQ nên MN//BC.
Đảo lại nếu MN//BC thì\(\left\{ {\begin{array}{*{20}{c}}{PQ = (\alpha ) \cap (SBC)}\\{MN \subset (\alpha )}\\{BC \subset (SBC)}\end{array}} \right. \Rightarrow PQ\parallel MN\parallel BC\) nên tứ giác MNPQ là hình thang.
Vậy tứ giác MNPQ là hình thang thì điều kiện là MN//BC .
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM=\(\frac{2}{3}\)SD (minh họa như hình vẽ). Mặt phẳng chứa AM và song song với BD cắt cạnh SC tại K. Tỷ số \(\frac{{SK}}{{SC}}\) bằng
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A′ là điểm trên SA sao cho \[\overrightarrow {{\rm{AA}}'} = \frac{1}{2}\overrightarrow {A'S} \]. Mặt phẳng (α) qua A′ cắt các cạnh SB, SC, SD lần lượt tại B′, C′, D′. Tính giá trị của biểu thức \(T = \frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}}\).
Câu 3:
Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho \[BM = C\prime N = DP = \frac{a}{3}\]. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng (MNP).
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi I,J lần lượt là trung điểm của các cạnh AD,BCvà G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sao đây đúng?
Câu 5:
Cho tứ diện ABCD có AB=6, CD=8. Cắt tứ diện bởi một mặt phẳng song song với AB, CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng
Câu 6:
Cho hình hộp ABCD.A′B′C′D′. Trên các cạnh AA′, BB′, CC′ lần lượt lấy ba điểm M, N, P sao cho \[\frac{{A'M}}{{{\rm{AA}}'}} = \frac{1}{3},\frac{{B'N}}{{BB'}} = \frac{2}{3},\frac{{C'P}}{{CC'}} = \frac{1}{2}\]. Biết mặt phẳng (MNP) cắt cạnh DD′ tại Q. Tính tỉ số \[\frac{{D'Q}}{{{\rm{DD}}'}}\]
Câu 7:
Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG) là
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Định luật khúc xạ ánh sáng
về câu hỏi!