Câu hỏi:

25/06/2022 3,329

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm trên cạnh SC và (α) là mặt phẳng chứa AM và song song với BD. Gọi E và F lần lượt là giao điểm của (α) với các cạnh SB,SD, gọi I là giao điểm của ME và BC,J là giao điểm của MF và CD. Nhận xét gì về ba điểm I,J,A?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm trên cạnh SC và  (ảnh 1)

Giả sử dựng được điểm E,F thỏa mãn yêu cầu bài toán.

Ta có\(\left\{ {\begin{array}{*{20}{c}}{EF = (\alpha ) \cap (SBD)}\\{(\alpha )\parallel BD}\\{BD \subset (SBD)}\end{array}} \right. \Rightarrow EF\parallel BD\)

Do đó các điểm E,F,A,M  cùng thuộc mặt phẳng (α).

Trong mặt phẳng (α), gọi \[K = EF \cap AM.\]

Ta có:\[K \in EF,EF \subset \left( {SBD} \right) \Rightarrow K \in \left( {SBD} \right).\]

\[K \in AM,AM \subset \left( {SAC} \right) \Rightarrow K \in \left( {SAC} \right) \Rightarrow K \in \left( {SBD} \right) \cap \left( {SAC} \right).\]

Mà\[\left( {SAC} \right) \cap \left( {SBD} \right) = SO\] với\[O = AC \cap BD \Rightarrow K \in SO.\]

Cách dựng E,F: Dựng giao điểm K  của AM  và SO . Qua K kẻ đường thẳng song song với BD cắt SB tại E  và cắt SD tại F .Do\(\left\{ {\begin{array}{*{20}{c}}{I = ME \cap BC}\\{I \in ME,ME \subset (\alpha ) \Rightarrow I \in (\alpha )}\\{I \in BC,BC \subset (ABCD) \Rightarrow I \in (ABCD)}\end{array}} \right.\)

Do đó\[I \in \left( \alpha \right) \cap \left( {ABCD} \right)\]

Tương tự ta cũng có\[J \in \left( \alpha \right) \cap \left( {ABCD} \right)\] và\[A \in \left( \alpha \right) \cap \left( {ABCD} \right)\]

Vậy I,J,A cùng thuộc giao tuyến của mp(α) và (ABCD).

Vậy I,J,A thẳng hàng.

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM=\(\frac{2}{3}\)SD (minh họa như hình vẽ). Mặt phẳng chứa AM và song song với BD cắt cạnh SC tại K. Tỷ số \(\frac{{SK}}{{SC}}\) bằng

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 1)

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 2)

Xem đáp án » 25/06/2022 42,941

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A′ là điểm trên SA sao cho \[\overrightarrow {{\rm{AA}}'} = \frac{1}{2}\overrightarrow {A'S} \]. Mặt phẳng (α) qua A′ cắt các cạnh SB, SC, SD lần lượt tại B′, C′, D′. Tính giá trị của biểu thức \(T = \frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}}\).

Xem đáp án » 25/06/2022 7,868

Câu 3:

Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho \[BM = C\prime N = DP = \frac{a}{3}\]. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng (MNP).

Xem đáp án » 25/06/2022 7,528

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi I,J lần lượt là trung điểm của các cạnh AD,BCvà G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sao đây đúng?

Xem đáp án » 25/06/2022 6,194

Câu 5:

Cho tứ diện ABCD có AB=6, CD=8. Cắt tứ diện bởi một mặt phẳng song song với AB, CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng

Xem đáp án » 25/06/2022 5,756

Câu 6:

Cho hình hộp ABCD.A′B′C′D′. Trên các cạnh AA′, BB′, CC′ lần lượt lấy ba điểm M, N, P sao cho \[\frac{{A'M}}{{{\rm{AA}}'}} = \frac{1}{3},\frac{{B'N}}{{BB'}} = \frac{2}{3},\frac{{C'P}}{{CC'}} = \frac{1}{2}\]. Biết mặt phẳng (MNP) cắt cạnh DD′ tại Q. Tính tỉ số \[\frac{{D'Q}}{{{\rm{DD}}'}}\]

Xem đáp án » 25/06/2022 4,403

Câu 7:

Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG) là

Xem đáp án » 25/06/2022 4,162

Bình luận


Bình luận