Cho tứ diện đều ABCD cạnh a . Gọi M và P lần lượt là hai điểm di động trên các cạnh AD và BC sao cho \[MA = PC = x(0 < x < \frac{a}{2})\] . Mặt phẳng (α) đi qua MP song song với CD cắt tứ diện theo một thiết diện là hình gì?
A.Hình bình hành
B.Hình thoi
C.Hình thang
D.Hình thang cân
Quảng cáo
Trả lời:

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{M \in (\alpha ) \cap (ACD)}\\{CD\parallel (\alpha )}\\{CD \subset (ACD)}\end{array}} \right.\)
Suy ra \[\left( \alpha \right) \cap \left( {ACD} \right) = MN\parallel CD\] với \[N \in AC\].
Tương tự\[\left( \alpha \right) \cap \left( {BCD} \right) = PQ\parallel CD\] với \[Q \in BD.\]
Vì MN//CD//PQ nên thiết diện MNPQ là hình thang.
Ta có \[DQ = CP = x,DM = a - x\]
Áp dụng định lí Cosin trong tam giác DMQ ta có:
\[MQ = \sqrt {D{M^2} + D{Q^2} - 2DM.DQ.cos60} = \sqrt {3{x^2} - 3ax + {a^2}} .\]
Tương tự ta cũng tính được \[NP = \sqrt {3{x^2} - 3ax + {a^2}} .\]
Suy ra MQ=NP .
Mặt khác ta có
\[\begin{array}{l}MN = x < \frac{a}{2};PQ = a - x > \frac{a}{2}\\ \Rightarrow MN \ne PQ\end{array}\]
⇒MNPQ không là hình bình hành
Vậy thiết diện MNPQ là hình thang cân.
Đáp án cần chọn là: D
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[\frac{1}{3}\]
B. \[\frac{2}{3}\]
C. \[\frac{1}{2}\]
D. \[\frac{3}{4}\]
Lời giải
Gọi mặt phẳng chứa AM và song song với BD là (α).
Trong (SBD) kẻ\[MN//BD\,\,\left( {N \in SB} \right)\] khi đó ta có\[\left( \alpha \right) \equiv \left( {AMN} \right)\]
Gọi\[O = AC \cap BD\] trong (SBD) gọi \[\left\{ I \right\} = MN \cap SO\] trong (SAC) gọi\[K = AI \cap SC\] ta có:
\(\left\{ {\begin{array}{*{20}{c}}{K \in AI \subset (AMN)}\\{K \in SC}\end{array}} \right. \Rightarrow K = \left( {AMN} \right) \cap SC\) hay\[K = \left( \alpha \right) \cap SC\]
Áp dụng định lí Talets ta có\[\frac{{SI}}{{SO}} = \frac{{SM}}{{SD}} = \frac{2}{3}\]
\[ \Rightarrow \frac{{IS}}{{IO}} = 2\]
Ta có: O là trung điểm của AC nên\[\frac{{AO}}{{AC}} = \frac{1}{2}\]
Áp dụng định lí Menelaus trong tam giác SOC, cát tuyến AIK ta có:
\[\frac{{IS}}{{IO}}.\frac{{AO}}{{AC}}.\frac{{KC}}{{KS}} = 1 \Leftrightarrow 2.\frac{1}{2}.\frac{{KC}}{{KS}} = 1 \Leftrightarrow \frac{{KC}}{{KS}} = 1 \Rightarrow \frac{{SK}}{{SC}} = \frac{1}{2}\]
Đáp án cần chọn là: C
Câu 2
A.\[T = \frac{3}{2}\]
b. \[T = \frac{1}{3}\]
C. \[T = 2\]
D. \[T = \frac{1}{2}\]
Lời giải
Gọi O là giao của AC và BD. Ta có O là trung điểm của đoạn thẳng AC, BD.
Các đoạn thẳng SO,A′C′, B′D′ đồng quy tại I.
Ta có: \[{S_{SA'I}} + {S_{SC'I}} = {S_{SA'C'}} \Leftrightarrow \frac{{{S_{SA'I}}}}{{{S_{SAC}}}} + \frac{{{S_{SC'I}}}}{{{S_{SAC}}}} = \frac{{{S_{SA'C'}}}}{{{S_{SAC}}}}\]
\[ \Leftrightarrow \frac{{{S_{SA'I}}}}{{2{S_{SAO}}}} + \frac{{{S_{SC'I}}}}{{2{S_{SCO}}}} = \frac{{{S_{SA'C'}}}}{{{S_{SAC}}}}\]
\[ \Leftrightarrow \frac{{SA'}}{{2SA}}.\frac{{SI}}{{SO}} + \frac{{SC'}}{{2SC}}.\frac{{SI}}{{SO}} = \frac{{SA'}}{{SA}}.\frac{{SC'}}{{SC}}\]
\[ \Leftrightarrow \frac{{SI}}{{2SO}}\left( {\frac{{SA'}}{{SA}} + \frac{{SC'}}{{SC}}} \right) = \frac{{SA'}}{{SA}}.\frac{{SC'}}{{SC}} \Leftrightarrow \frac{{SA}}{{SA'}} + \frac{{SC}}{{SC'}} = 2.\frac{{SO}}{{SI}}\]
Tương tự:\[\frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} = 2.\frac{{SO}}{{SI}}\]
Suy ra:\[\frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}} = \frac{{SA}}{{SA'}} = \frac{3}{2}\]
Đáp án cần chọn là: A
Câu 3
A.\[S = \frac{{17\sqrt 3 {a^2}}}{{18}}.\]
B. \[S = \frac{{5\sqrt 3 {a^2}}}{{18}}.\]
C. \[S = \frac{{13\sqrt 3 {a^2}}}{{18}}.\]
D. \[S = \frac{{11\sqrt 3 {a^2}}}{{18}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[AB = \frac{1}{3}CD\]
b. \[AB = \frac{3}{2}CD\]
c. \[AB = 3CD\]
d. \[AB = \frac{2}{3}CD\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[\frac{{31}}{7}\]
B. \[\frac{{18}}{7}\]
C. \[\frac{{24}}{7}\]
D. \[\frac{{15}}{7}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\[\frac{{3\sqrt {15} {a^2}}}{{16}}\]
B. \[\frac{{3\sqrt 5 {a^2}}}{{16}}\]
C. \[\frac{{3\sqrt 5 {a^2}}}{8}\]
D. \[\frac{{\sqrt {15} {a^2}}}{{16}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.Tam giác.
B.Tứ giác.
C.Ngũ giác.
D.Lục giác
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.