Câu hỏi:

25/06/2022 3,004 Lưu

Cho hình chóp S.ABC có đáy ABC  là tam giác đều cạnh a,SA=SB=SC=2a.M  là một điểm trên đoạn SB  mà SM=m(0

A.4a 

B.4a−m 

C.4a−2m 

D.2a+m 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\left\{ {\begin{array}{*{20}{c}}{M \in (\alpha ) \cap (SAB)}\\{(\alpha )//SA \subset (SAB)}\end{array}} \right. \Rightarrow \)  Qua MM  kẻ\[MQ//SA\left( {Q \in AB} \right) \Rightarrow \left( \alpha \right) \cap \left( {SAB} \right) = MQ.\]

Tương tự như trên ta xác định được

\[\begin{array}{*{20}{l}}{\left( \alpha \right) \cap \left( {ABC} \right) = QP//BC\,\,\left( {P \in AC} \right)}\\{\left( \alpha \right) \cap \left( {SBC} \right) = MN//BC\,\,\left( {N \in BC} \right)}\\{\left( \alpha \right) \cap \left( {SAC} \right) = PN//SA}\end{array}\]

Suy ra thiết diện của hình chóp khi cắt bởi mp(α) là hình bình hành MNPQ.

Áp dụng định lý Ta-let ta có:

\[\begin{array}{*{20}{l}}{\frac{{MN}}{{BC}} = \frac{{SM}}{{SB}} \Rightarrow \frac{{MN}}{a} = \frac{m}{{2a}} \Rightarrow MN = \frac{m}{2}}\\{\frac{{QM}}{{SA}} = \frac{{BM}}{{BS}} \Rightarrow \frac{{QM}}{{2a}} = \frac{{2a - m}}{{2a}} \Rightarrow QM = 2a - m.}\end{array}\]

Vậy chu vi hình bình hành MNPQ là:

\[2\left( {MN + QM} \right) = 2\left( {\frac{m}{2} + 2a - m} \right) = m + 4a - 2m = 4a - m.\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 3)

Gọi mặt phẳng chứa AM và song song với BD là (α).

Trong (SBD) kẻ\[MN//BD\,\,\left( {N \in SB} \right)\] khi đó ta có\[\left( \alpha \right) \equiv \left( {AMN} \right)\]

Gọi\[O = AC \cap BD\] trong (SBD) gọi \[\left\{ I \right\} = MN \cap SO\]  trong (SAC) gọi\[K = AI \cap SC\] ta có:

\(\left\{ {\begin{array}{*{20}{c}}{K \in AI \subset (AMN)}\\{K \in SC}\end{array}} \right. \Rightarrow K = \left( {AMN} \right) \cap SC\) hay\[K = \left( \alpha \right) \cap SC\]

Áp dụng định lí Talets ta có\[\frac{{SI}}{{SO}} = \frac{{SM}}{{SD}} = \frac{2}{3}\]

\[ \Rightarrow \frac{{IS}}{{IO}} = 2\]

Ta có: O là trung điểm của AC nên\[\frac{{AO}}{{AC}} = \frac{1}{2}\]

Áp dụng định lí Menelaus trong tam giác SOC, cát tuyến AIK ta có:

\[\frac{{IS}}{{IO}}.\frac{{AO}}{{AC}}.\frac{{KC}}{{KS}} = 1 \Leftrightarrow 2.\frac{1}{2}.\frac{{KC}}{{KS}} = 1 \Leftrightarrow \frac{{KC}}{{KS}} = 1 \Rightarrow \frac{{SK}}{{SC}} = \frac{1}{2}\]

Đáp án cần chọn là: C

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A′ là điểm trên SA sao cho  (ảnh 1)

Gọi O là giao của AC và BD. Ta có O là trung điểm của đoạn thẳng AC, BD.

Các đoạn thẳng SO,A′C′, B′D′ đồng quy tại I.

Ta có: \[{S_{SA'I}} + {S_{SC'I}} = {S_{SA'C'}} \Leftrightarrow \frac{{{S_{SA'I}}}}{{{S_{SAC}}}} + \frac{{{S_{SC'I}}}}{{{S_{SAC}}}} = \frac{{{S_{SA'C'}}}}{{{S_{SAC}}}}\]

\[ \Leftrightarrow \frac{{{S_{SA'I}}}}{{2{S_{SAO}}}} + \frac{{{S_{SC'I}}}}{{2{S_{SCO}}}} = \frac{{{S_{SA'C'}}}}{{{S_{SAC}}}}\]

\[ \Leftrightarrow \frac{{SA'}}{{2SA}}.\frac{{SI}}{{SO}} + \frac{{SC'}}{{2SC}}.\frac{{SI}}{{SO}} = \frac{{SA'}}{{SA}}.\frac{{SC'}}{{SC}}\]

\[ \Leftrightarrow \frac{{SI}}{{2SO}}\left( {\frac{{SA'}}{{SA}} + \frac{{SC'}}{{SC}}} \right) = \frac{{SA'}}{{SA}}.\frac{{SC'}}{{SC}} \Leftrightarrow \frac{{SA}}{{SA'}} + \frac{{SC}}{{SC'}} = 2.\frac{{SO}}{{SI}}\]

Tương tự:\[\frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} = 2.\frac{{SO}}{{SI}}\]

Suy ra:\[\frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}} = \frac{{SA}}{{SA'}} = \frac{3}{2}\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\[\frac{{3\sqrt {15} {a^2}}}{{16}}\]

B. \[\frac{{3\sqrt 5 {a^2}}}{{16}}\]

C. \[\frac{{3\sqrt 5 {a^2}}}{8}\]

D. \[\frac{{\sqrt {15} {a^2}}}{{16}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP