Câu hỏi:

25/06/2022 9,850

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm SD, N là trọng tâm tam giác SAB. Đường thẳng MN cắt mặt phẳng (SBC) tại điểm I. Tính tỷ số \(\frac{{IN}}{{IM}}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm SD, N là trọng tâm tam giác SAB. Đường thẳng MN cắt mặt phẳng (SBC) tại điểm I. Tính tỷ số (ảnh 1)

Gọi J;E lần lượt là trung điểm SA;AB.

Trong mặt phẳng (BCMJ) gọi \[I = MN \cap BC\]

Ta có: IM là đường trung tuyến của tam giác SID.

Trong tam giác ICD ta có BE song song và bằng\[\frac{1}{2}CD\] nên suy ra BE là đường trung bình của tam giác ICD⇒EI là trung điểm ID⇒SE là đường trung tuyến của tam giác SID.

Ta có: \[N = IM \cap SE \Rightarrow N\]  là trọng tâm tam giác\[SID \Rightarrow \frac{{IN}}{{IM}} = \frac{2}{3}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Qua phép chiếu song song, tính chất chéo nhau không được bảo toàn.

Đáp án cần chọn là: A

Lời giải

Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ các nửa đường thẳng Ax, By, Cz, Dt ở cùng phía so với mặt phẳng (ABCD), song song với nhau và không nằm trong (ABCD). Một mặt phẳng (P) cắt (ảnh 1)

Do (P) cắt mặt phẳng (Ax,By) theo giao tuyến A′B′; cắt mặt phẳng (Cz,Dt) theo giao tuyến C′D′, mà hai mặt phẳng (Ax,By) và (Cz,Dt) song song nên \[A'B'//C'D'\]

Tương tự có \[A'D'//B'C'\] nên A′B′C′D′ là hình bình hành.

Gọi O, O′ lần lượt là tâm ABCD và A′B′C′D′. Dễ dàng có OO′ là đường trung bình của hai hình thang AA′C′C và BB′D′D nên\[OO' = \frac{{AA' + CC'}}{2} = \frac{{BB' + DD'}}{2}\]

Từ đó ta có DD′=2.

 Đáp án cần chọn là: C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP